Bio

Professional Education


  • Bachelor of Science, Wake Forest University (2013)
  • Doctor of Philosophy, Emory University (2013)

Stanford Advisors


Publications

All Publications


  • Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature methods Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., Kim, C. H., Park, J., O'Rourke, N. A., Nguyen, K. D., Smith, S. J., Huguenard, J. R., Geschwind, D. H., Barres, B. A., Pasca, S. P. 2015; 12 (7): 671-678

    Abstract

    The human cerebral cortex develops through an elaborate succession of cellular events that, when disrupted, can lead to neuropsychiatric disease. The ability to reprogram somatic cells into pluripotent cells that can be differentiated in vitro provides a unique opportunity to study normal and abnormal corticogenesis. Here, we present a simple and reproducible 3D culture approach for generating a laminated cerebral cortex-like structure, named human cortical spheroids (hCSs), from pluripotent stem cells. hCSs contain neurons from both deep and superficial cortical layers and map transcriptionally to in vivo fetal development. These neurons are electrophysiologically mature, display spontaneous activity, are surrounded by nonreactive astrocytes and form functional synapses. Experiments in acute hCS slices demonstrate that cortical neurons participate in network activity and produce complex synaptic events. These 3D cultures should allow a detailed interrogation of human cortical development, function and disease, and may prove a versatile platform for generating other neuronal and glial subtypes in vitro.

    View details for DOI 10.1038/nmeth.3415

    View details for PubMedID 26005811

  • Attentional flexibility in the thalamus: now we're getting SOMwhere. Nature neuroscience Makinson, C. D., Huguenard, J. R. 2014; 18 (1): 2-4

    View details for DOI 10.1038/nn.3902

    View details for PubMedID 25547472

  • Role of the hippocampus in Na(v)1.6 (Scn8a) mediated seizure resistance NEUROBIOLOGY OF DISEASE Makinson, C. D., Tanaka, B. S., Lamar, T., Goldin, A. L., Escayg, A. 2014; 68: 16-25

    Abstract

    SCN1A mutations are the main cause of the epilepsy disorders Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Mutations that reduce the activity of the mouse Scn8a gene, in contrast, are found to confer seizure resistance and extend the lifespan of mouse models of DS and GEFS+. To investigate the mechanism by which reduced Scn8a expression confers seizure resistance, we induced interictal-like burst discharges in hippocampal slices of heterozygous Scn8a null mice (Scn8a(med/+)) with elevated extracellular potassium. Scn8a(med/+) mutants exhibited reduced epileptiform burst discharge activity after P20, indicating an age-dependent increased threshold for induction of epileptiform discharges. Scn8a deficiency also reduced the occurrence of burst discharges in a GEFS+ mouse model (Scn1a(R1648H/+)). There was no detectable change in the expression levels of Scn1a (Nav1.1) or Scn2a (Nav1.2) in the hippocampus of adult Scn8a(med/+) mutants. To determine whether the increased seizure resistance associated with reduced Scn8a expression was due to alterations that occurred during development, we examined the effect of deleting Scn8a in adult mice. Global Cre-mediated deletion of a heterozygous floxed Scn8a allele in adult mice was found to increase thresholds to chemically and electrically induced seizures. Finally, knockdown of Scn8a gene expression in the adult hippocampus via lentiviral Cre injection resulted in a reduction in the number of EEG-confirmed seizures following the administration of picrotoxin. Our results identify the hippocampus as an important structure in the mediation of Scn8a-dependent seizure protection and suggest that selective targeting of Scn8a activity might be efficacious in patients with epilepsy.

    View details for DOI 10.1016/j.nbd.2014.03.014

    View details for Web of Science ID 000337992300002

    View details for PubMedID 24704313

  • Effects of an epilepsy-causing mutation in the SCN1A sodium channel gene on cocaine-induced seizure susceptibility in mice PSYCHOPHARMACOLOGY Purcell, R. H., Papale, L. A., Makinson, C. D., Sawyer, N. T., Schroeder, J. P., Escayg, A., Weinshenker, D. 2013; 228 (2): 263-270

    Abstract

    High doses of cocaine can elicit seizures in humans and in laboratory animals. Several mechanisms have been proposed for the induction of seizures by cocaine, including enhanced monoaminergic signaling, blockade of ion channels, and alterations in GABA and glutamate transmission. Mutations in the SCN1A gene, which encodes the central nervous system (CNS) voltage-gated sodium channel (VGSC) Nav1.1, are responsible for several human epilepsy disorders including Dravet syndrome and genetic (generalized) epilepsy with febrile seizures plus (GEFS+). Mice heterozygous for the R1648H GEFS+ mutation (RH mice) exhibit reduced interneuron excitability, spontaneous seizures, and lower thresholds to flurothyl- and hyperthermia-induced seizures. However, it is unknown whether impaired CNS VGSC function or a genetic predisposition to epilepsy increases susceptibility to cocaine-induced seizures.Our primary goal was to determine whether Scn1a dysfunction caused by the RH mutation alters sensitivity to cocaine-induced behavioral and electrographic (EEG) seizures. We also tested novelty- and cocaine-induced locomotor activity and assessed the expression of Nav1.1 in midbrain dopaminergic neurons.We found that RH mice had a profound increase in cocaine-induced behavioral seizure susceptibility compared to wild-type (WT) controls, which was confirmed with cortical EEG recordings. By contrast, although the RH mice were hyperactive in novel environments, cocaine-induced locomotor activity was comparable between the mutants and WT littermates. Finally, immunofluorescence experiments revealed a lack of Nav1.1 immunoreactivity in dopaminergic neurons.These data indicate that a disease-causing CNS VGSC mutation confers susceptibility to the proconvulsant, but not motoric, effects of cocaine.

    View details for DOI 10.1007/s00213-013-3034-8

    View details for Web of Science ID 000320954500009

    View details for PubMedID 23494229

  • Altered sleep regulation in a mouse model of SCN1A-derived genetic epilepsy with febrile seizures plus (GEFS+). Epilepsia Papale, L. A., Makinson, C. D., Christopher Ehlen, J., Tufik, S., Decker, M. J., Paul, K. N., Escayg, A. 2013; 54 (4): 625-634

    Abstract

    Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. In addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations.Using immunohistochemistry we first examined the expression of mouse Scn1a in regions of the mouse brain that are known to be involved in seizure generation and sleep regulation. Next, we performed detailed analysis of sleep and wake electroencephalography (EEG) patterns during 48 continuous hours of baseline recordings in a knock-in mouse line that expresses the human SCN1A GEFS+ mutation R1648H (RH mutants). We also characterized the sleep-wake pattern following 6 h of sleep deprivation.Immunohistochemistry revealed broad expression of Scn1a in the neocortex, hippocampus, hypothalamus, thalamic reticular nuclei, dorsal raphe nuclei, pedunculopontine, and laterodorsal tegmental nuclei. Co-localization between Scn1a immunoreactivity and critical cell types within these regions was also observed. EEG analysis under baseline conditions revealed increased wakefulness and reduced non-rapid eye movement (NREM) and rapid eye movement (REM) sleep amounts during the dark phase in the RH mutants, suggesting a sleep deficit. Nevertheless, the mutants exhibited levels of NREM and REM sleep that were generally similar to wild-type littermates during the recovery period following 6 h of sleep deprivation.These results establish a direct role for SCN1A in the regulation of sleep and suggest that patients with SCN1A mutations may experience chronic alterations in sleep, potentially leading to negative outcomes over time. In addition, the expression of Scn1a in specific cell types/brain regions that are known to play critical roles in seizure generation and sleep now provides a mechanistic basis for the clinical features (seizures and sleep abnormalities) associated with human SCN1A mutations.

    View details for DOI 10.1111/epi.12060

    View details for PubMedID 23311867

  • Preferential inactivation of Scn1a in parvalbumin interneurons increases seizure susceptibility NEUROBIOLOGY OF DISEASE Dutton, S. B., Makinson, C. D., Papale, L. A., Shankar, A., Balakrishnan, B., Nakazawa, K., Escayg, A. 2013; 49: 211-220

    Abstract

    Voltage-gated sodium channels (VGSCs) are essential for the generation and propagation of action potentials in electrically excitable cells. Dominant mutations in SCN1A, which encodes the Nav1.1 VGSC ?-subunit, underlie several forms of epilepsy, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+). Electrophysiological analyses of DS and GEFS+ mouse models have led to the hypothesis that SCN1A mutations reduce the excitability of inhibitory cortical and hippocampal interneurons. To more directly examine the relative contribution of inhibitory interneurons and excitatory pyramidal cells to SCN1A-derived epilepsy, we first compared the expression of Nav1.1 in inhibitory parvalbumin (PV) interneurons and excitatory neurons from P22 mice using fluorescent immunohistochemistry. In the hippocampus and neocortex, 69% of Nav1.1 immunoreactive neurons were also positive for PV. In contrast, 13% and 5% of Nav1.1 positive cells in the hippocampus and neocortex, respectively, were found to co-localize with excitatory cells identified by CaMK2? immunoreactivity. Next, we reduced the expression of Scn1a in either a subset of interneurons (mainly PV interneurons) or excitatory cells by crossing mice heterozygous for a floxed Scn1a allele to either the Ppp1r2-Cre or EMX1-Cre transgenic lines, respectively. The inactivation of one Scn1a allele in interneurons of the neocortex and hippocampus was sufficient to reduce thresholds to flurothyl- and hyperthermia-induced seizures, whereas thresholds were unaltered following inactivation in excitatory cells. Reduced interneuron Scn1a expression also resulted in the generation of spontaneous seizures. These findings provide direct evidence for an important role of PV interneurons in the pathogenesis of Scn1a-derived epilepsies.

    View details for DOI 10.1016/j.nbd.2012.08.012

    View details for Web of Science ID 000311594600023

    View details for PubMedID 22926190

  • Ablation of Cyclooxygenase-2 in Forebrain Neurons is Neuroprotective and Dampens Brain Inflammation after Status Epilepticus JOURNAL OF NEUROSCIENCE Serrano, G. E., Lelutiu, N., Rojas, A., Cochi, S., Shaw, R., Makinson, C. D., Wang, D., FitzGerald, G. A., Dingledine, R. 2011; 31 (42): 14850-14860

    Abstract

    Cyclooxygenase-2 (COX-2), a source of inflammatory mediators and a multifunctional neuronal modulator, is rapidly induced in select populations of cortical neurons after status epilepticus. The consequences of rapid activity-triggered induction of COX-2 in neurons have been the subject of much study and speculation. To address this issue directly, we created a mouse in which COX-2 is conditionally ablated in selected forebrain neurons. Results following pilocarpine-induced status epilepticus indicate that neuronal COX-2 promotes early neuroprotection and then delayed neurodegeneration of CA1 pyramidal neurons, promotes neurodegeneration of nearby somatostatin interneurons in the CA1 stratum oriens and dentate hilus (which themselves do not express COX-2), intensifies a broad inflammatory reaction involving numerous cytokines and other inflammatory mediators in the hippocampus, and is essential for development of a leaky blood-brain barrier after seizures. These findings point to a profound role of seizure-induced neuronal COX-2 expression in neuropathologies that accompany epileptogenesis.

    View details for DOI 10.1523/JNEUROSCI.3922-11.2011

    View details for Web of Science ID 000296274000004

    View details for PubMedID 22016518

  • Tactile co-activation improves detection of afferent spatial modulation EXPERIMENTAL BRAIN RESEARCH Gibson, G. O., Makinson, C. D., Sathian, K. 2009; 194 (3): 409-417

    Abstract

    Tactile co-activation, i.e., synchronous stimulation of a region of skin, has been reported to improve tactile spatial acuity and expand the corresponding somatosensory cortical representation. The current study aimed to clarify the nature of the changes resulting from tactile co-activation, using three measures of tactile sensitivity obtained with controlled mechanical stimulation. One was the grating orientation (GR/OR) discrimination task, where acuity is indexed by the threshold groove width required for 75% correct discrimination between two orthogonal orientations of a grating on the fingerpad. Since this task may be susceptible to intensity cues due to tactile anisotropy, another acuity measure, the 3-dot task, was also used. In this task, the acuity threshold corresponds to 75% correct discrimination of the direction of offset of the central dot in a 3-dot array. In Experiment 1, co-activation failed to induce significant improvement in acuity with either of these measures. Experiment 2 employed both the GR/OR task, and a third measure based on discriminating a grooved from a smooth surface (SM/GV). While the former task demands detailed spatial resolution, the latter requires only that spatial modulation in the afferent population be detected. This experiment also included a control group. GR/OR performance did not significantly improve for either the control or experimental groups. There was, however, a significant improvement in SM/GV performance following co-activation for the experimental but not the control group. These findings indicate that the SM/GV task may be better suited than the GR/OR or 3-dot tasks for measuring changes in tactile sensitivity following co-activation.

    View details for DOI 10.1007/s00221-009-1717-5

    View details for Web of Science ID 000264854900008

    View details for PubMedID 19198816

Footer Links:

Stanford Medicine Resources: