School of Medicine
Showing 1-10 of 14 Results
-
Che-Hong Chen
Sr Res Scientist-Basic Ls, Chemical and Systems Biology Operations
Current Role at Stanford Senior Research Scientist
CEO, International ALDH2 STAR Research Consortium
Director of China, Singapore, and Taiwan Outreach, Center for Asian Health Research and Education Center -
James K. Chen
Jauch Professor and Professor of Chemical and Systems Biology, of Developmental Biology and of Chemistry
Current Research and Scholarly Interests Our laboratory combines chemistry and developmental biology to investigate the molecular events that regulate embryonic patterning, tissue regeneration, and tumorigenesis. We are currently using genetic and small-molecule approaches to study the molecular mechanisms of Hedgehog signaling, and we are developing chemical technologies to perturb and observe the genetic programs that underlie vertebrate development.
-
Gheorghe Chistol
Assistant Professor of Chemical and Systems Biology
Current Research and Scholarly Interests Research in my laboratory is aimed at understanding how eukaryotes replicate their DNA despite numerous challenges (collectively known as replication stress), and more generally ? how eukaryotic cells safeguard genome integrity. Specifically, we are investigating: (i) mechanisms that regulate the activity of the replicative helicase during replication stress, (ii) mechanisms that control the inheritance of epigenetic information during replication, and (iii) mechanisms of ubiquitin-mediated regulation of genome maintenance. We utilize single-molecule microscopy to directly image fluorescently-labeled replication factors and track them in real time in Xenopus egg extracts. I developed this system as a postdoctoral fellow, and used it to monitor how the eukaryotic replicative helicase copes with DNA damage. We plan to further extend the capabilities of this platform to directly visualize other essential replication factors, nucleosomes, and regulatory post-translational modifications like ubiquitin chains. By elucidating molecular mechanisms responsible for maintaining genome stability, we aim to better understand the link between genome instability and cancer, and how these mechanisms can be harnessed to improve disease treatment.