School of Medicine


Showing 91-100 of 133 Results

  • Timothy Angelotti MD, PhD

    Timothy Angelotti MD, PhD

    Associate Professor of Anesthesiology, Perioperative and Pain Medicine (ICU) at the Stanford University Medical Center

    Current Research and Scholarly Interests My research efforts are focused on investigating the pharmacological and physiological interface of the autonomic nervous system with effector organs. Utilizing molecular, cellular, and electrophysiological techniques, we are examining alpha2 adrenergic receptor function in cultured sympathetic neurons. Future research aims will be directed toward understanding neurotransmitter release in general.

  • Martin S. Angst

    Martin S. Angst

    Professor of Anesthesiology, Perioperative and Pain Medicine at the Stanford University Medical Center

    Current Research and Scholarly Interests Our laboratory's current transformative research efforts focus on studying immune health in the context of surgery and anesthesia.

  • Justin P. Annes M.D., Ph.D.

    Justin P. Annes M.D., Ph.D.

    Assistant Professor of Medicine (Endocrinology)

    Current Research and Scholarly Interests The ANNES LABORATORY of Molecular Endocrinology: Leveraging Chemical Biology to Treat Endocrine Disorders

    DIABETES
    The prevalence of diabetes is increasing at a staggering rate. By the year 2050 an astounding 25% of Americans will be diabetic. The goal of my research is to uncover therapeutic strategies to stymie the ensuing diabetes epidemic. To achieve this goal we have developed a variety of innovate experimental approaches to uncover novel approaches to curing diabetes.

    (1) Beta-Cell Regeneration: Diabetes results from either an absolute or relative deficiency in insulin production. Our therapeutic strategy is to stimulate the regeneration of insulin-producing beta-cells to enhance an individual?s insulin secretion capacity. We have developed a unique high-throughput chemical screening platform which we use to identify small molecules that promote beta-cell growth. This work has led to the identification of key molecular pathways (therapeutic targets) and candidate drugs that promote the growth and regeneration of islet beta-cells. Our goal is to utilize these discoveries to treat and prevent diabetes.

    (2) The Metabolic Syndrome: A major cause of the diabetes epidemic is the rise in obesity which leads to a cluster of diabetes- and cardiovascular disease-related metabolic abnormalities that shorten life expectancy. These physiologic aberrations are collectively termed the Metabolic Syndrome (MS). My laboratory has developed an original in vivo screening platform t to identify novel hormones that influence the behaviors (excess caloric consumption, deficient exercise and disrupted sleep-wake cycles) and the metabolic abnormalities caused by obesity. We aim to manipulate these hormone levels to prevent the development and detrimental consequences of the MS.

    HEREDIATY PARAGAGLIOMA SYNDROME
    The Hereditary Paraganglioma Syndrome (hPGL) is a rare genetic cancer syndrome that is most commonly caused by a defect in mitochondrial metabolism. Our goal is to understand how altered cellular metabolism leads to the development of cancer. Although hPGL is uncommon, it serves as an excellent model for the abnormal metabolic behavior displayed by nearly all cancers. Our goal is to develop novel therapeutic strategies that target the abnormal behavior of cancer cells. In the laboratory we have developed hPGL mouse models and use high throughput chemical screening to identify the therapeutic susceptibilities that result from the abnormal metabolic behavior of cancer cells.

    As a physician scientist trained in clinical genetics I have developed expertise in hereditary endocrine disorders and devoted my efforts to treating families affected by the hPGL syndrome. By leveraging our laboratory expertise in the hPGL syndrome, our care for individuals who have inherited the hPGL syndrome is at the forefront of medicine. Our goal is to translate our laboratory discoveries to the treatment of affected families.

  • David Ansel

    David Ansel

    Clinical Assistant Professor, Pediatrics - Neonatal and Developmental Medicine

    Bio I am a Developmental-Behavioral Pediatrician (DBP) with clinical interests that include developmental delay, intellectual and learning disabilities, ADHD, autism, Asperger?s, anxiety, obsessive-compulsive, tic disorders, and psychopharmacology.

    The first 28 years of my career were spent in clinical practice combining both DBP and primary care (the latter focused on serving CSHCN). During those years I was involved in numerous divide-bridging efforts - including programs to coordinate inpatient & outpatient medicine, connect tertiary & primary care, and promote teamwork between pediatricians, psychologists, nurse practitioners, and other community partners. I founded my own solo practice in 1989 and managed its growth to an 8-provider group over the next 25 years. Our practice was a founding member of the PPOC and I served on its board of directors for 6 years. The PPOC is one of the largest pediatric IPA?s in the country, with >200 member providers affiliated with Boston Children's Hospital. Over the years we've been involved in groundbreaking QI initiatives including those involving asthma, weight, and ADHD management; medical home; and behavioral health integration with primary care.

    I?m pleased now to have an opportunity for a ?second act? on the clinician-educator track here at Stanford. I hope to use my unique experience straddling primary care and sub-specialty worlds to develop programs supporting DB assessment and care inside the medical home generally, and across the Packard Children's Health Alliance primary care network in particular.

Footer Links:

Stanford Medicine Resources: