Bio

Bio


Expertise: Neurobiology, Molecular Genetics, Developmental Biology, Gene Silencing

Methodology: Synapse Imaging (Two photon microscopy, Array Tomography), Calcium Imaging (Light Sheet Microscopy/SPIM, Light Field Microscopy), Optogenetics, CLARITY, Tol2 transgenesis, TALENs/CRISPRs, Video tracking and behavior computation.

Academic Appointments


Teaching

2013-14 Courses


Postdoctoral Advisees


Publications

Journal Articles


  • Orexin A and orexin receptor 1 axonal traffic in dorsal roots at the CNS/PNS interface. Frontiers in neuroscience Colas, D., Manca, A., Delcroix, J., Mourrain, P. 2014; 8: 20-?

    Abstract

    Hypothalamic orexin/hypocretin neurons send long axonal projections through the dorsal spinal cord in lamina I-II of the dorsal horn (DH) at the interface with the peripheral nervous system (PNS). We show that in the DH OXA fibers colocalize with substance P (SP) positive afferents of dorsal root ganglia (DRG) neurons known to mediate sensory processing. Further, OR1 is expressed in p75(NTR) and SP positive DRG neurons, suggesting a potential signaling pathway between orexin and DRG neurons. Interestingly, DRG sensory neurons have a distinctive bifurcating axon where one branch innervates the periphery and the other one the spinal cord (pseudo-unipolar neurons), allowing for potential functional coupling of distinct targets. We observe that OR1 is transported selectively from DRG toward the spinal cord, while OXA is accumulated retrogradely toward the DRG. We hence report a rare situation of asymmetrical neuropeptide receptor distribution between axons projected by a single neuron. These molecular and cellular data are consistent with the role of OXA/OR1 in sensory processing, including DRG neuronal modulation, and support the potential existence of an OX/HCRT circuit between CNS and PNS.

    View details for DOI 10.3389/fnins.2014.00020

    View details for PubMedID 24574957

  • Tracking zebrafish larvae in group - Status and perspectives. Methods (San Diego, Calif.) Martineau, P. R., Mourrain, P. 2013; 62 (3): 292-303

    Abstract

    Video processing is increasingly becoming a standard procedure in zebrafish behavior investigations as it enables higher research throughput and new or better measures. This trend, fostered by the ever increasing performance-to-price ratio of the required recording and processing equipment, should be expected to continue in the foreseeable future, with video-processing based methods permeating more and more experiments and, as a result, expanding the very role of behavioral studies in zebrafish research. To assess whether the routine video tracking of zebrafish larvae directly in the Petri dish is a capability that can be expected in the near future, the key processing concepts are discussed and illustrated on published zebrafish studies when available or other animals when not.

    View details for DOI 10.1016/j.ymeth.2013.05.002

    View details for PubMedID 23707495

  • Imaging zebrafish neural circuitry from whole brain to synapse. Frontiers in neural circuits Leung, L. C., Wang, G. X., Mourrain, P. 2013; 7: 76-?

    Abstract

    Recent advances in imaging tools are inspiring zebrafish researchers to tackle ever more ambitious questions in the neurosciences. Behaviorally fundamental conserved neural networks can now be potentially studied using zebrafish from a brain-wide scale to molecular resolution. In this perspective, we offer a roadmap by which a zebrafish researcher can navigate the course from collecting neural activities across the brain associated with a behavior, to unraveling molecular identities and testing the functional relevance of active neurons. In doing so, important insights will be gained as to how neural networks generate behaviors and assimilate changes in synaptic connectivity.

    View details for DOI 10.3389/fncir.2013.00076

    View details for PubMedID 23630470

  • Synaptic plasticity in sleep: learning, homeostasis and disease TRENDS IN NEUROSCIENCES Wang, G., Grone, B., Colas, D., Appelbaum, L., Mourrain, P. 2011; 34 (9): 452-463

    Abstract

    Sleep is a fundamental and evolutionarily conserved aspect of animal life. Recent studies have shed light on the role of sleep in synaptic plasticity. Demonstrations of memory replay and synapse homeostasis suggest that one essential role of sleep is in the consolidation and optimization of synaptic circuits to retain salient memory traces despite the noise of daily experience. Here, we review this recent evidence and suggest that sleep creates a heightened state of plasticity, which may be essential for this optimization. Furthermore, we discuss how sleep deficits seen in diseases such as Alzheimer's disease and autism spectrum disorders might not just reflect underlying circuit malfunction, but could also play a direct role in the progression of those disorders.

    View details for DOI 10.1016/j.tins.2011.07.005

    View details for Web of Science ID 000294941300002

    View details for PubMedID 21840068

  • Zebrafish: An integrative system for neurogenomics and neurosciences PROGRESS IN NEUROBIOLOGY Rinkwitz, S., Mourrain, P., Becker, T. S. 2011; 93 (2): 231-243

    Abstract

    Rapid technological advances over the past decade have moved us closer to a high throughput molecular approach to neurobiology, where we see the merging of neurogenetics, genomics, physiology, imaging and pharmacology. This is the case more in zebrafish than in any other model organism commonly used. Recent improvements in the generation of transgenic zebrafish now allow genetic manipulation and live imaging of neuronal development and function in early embryonic, larval, and adult animals. The sequenced zebrafish genome and comparative genomics give unprecedented insights into genome evolution and its relation to genome structure and function. There is now information on embryonic and larval expression of over 12,000 genes and just under 1000 mutant phenotypes. We review the remarkable similarity of the zebrafish genetic blueprint for the nervous system to that of mammals and assess recent technological advances that make the zebrafish a model of choice for elucidating the development and function of neuronal circuitry, transgene-based neuroanatomy, and small molecule neuropharmacology.

    View details for DOI 10.1016/j.pneurobio.2010.11.003

    View details for Web of Science ID 000287950400005

    View details for PubMedID 21130139

  • Circadian and Homeostatic Regulation of Structural Synaptic Plasticity in Hypocretin Neurons NEURON Appelbaum, L., Wang, G., Yokogawa, T., Skariah, G. M., Smith, S. J., Mourrain, P., Mignot, E. 2010; 68 (1): 87-98

    Abstract

    Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, modulates circadian synaptic changes. In zebrafish, nptx2b is a rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity.

    View details for DOI 10.1016/j.neuron.2010.09.006

    View details for Web of Science ID 000283704200010

    View details for PubMedID 20920793

  • Sleep-wake regulation and hypocretin-melatonin interaction in zebrafish PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Appelbaum, L., Wang, G. X., Maro, G. S., Mori, R., Tovin, A., Marin, W., Yokogawa, T., Kawakami, K., Smith, S. J., Gothilf, Y., Mignot, E., Mourrain, P. 2009; 106 (51): 21942-21947

    Abstract

    In mammals, hypocretin/orexin (HCRT) neuropeptides are important sleep-wake regulators and HCRT deficiency causes narcolepsy. In addition to fragmented wakefulness, narcoleptic mammals also display sleep fragmentation, a less understood phenotype recapitulated in the zebrafish HCRT receptor mutant (hcrtr-/-). We therefore used zebrafish to study the potential mediators of HCRT-mediated sleep consolidation. Similar to mammals, zebrafish HCRT neurons express vesicular glutamate transporters indicating conservation of the excitatory phenotype. Visualization of the entire HCRT circuit in zebrafish stably expressing hcrt:EGFP revealed parallels with established mammalian HCRT neuroanatomy, including projections to the pineal gland, where hcrtr mRNA is expressed. As pineal-produced melatonin is a major sleep-inducing hormone in zebrafish, we further studied how the HCRT and melatonin systems interact functionally. mRNA level of arylalkylamine-N-acetyltransferase (AANAT2), a key enzyme of melatonin synthesis, is reduced in hcrtr-/- pineal gland during the night. Moreover, HCRT perfusion of cultured zebrafish pineal glands induces melatonin release. Together these data indicate that HCRT can modulate melatonin production at night. Furthermore, hcrtr-/- fish are hypersensitive to melatonin, but not other hypnotic compounds. Subthreshold doses of melatonin increased the amount of sleep and consolidated sleep in hcrtr-/- fish, but not in the wild-type siblings. These results demonstrate the existence of a functional HCRT neurons-pineal gland circuit able to modulate melatonin production and sleep consolidation.

    View details for DOI 10.1073/pnas.906637106

    View details for Web of Science ID 000272994200086

    View details for PubMedID 19966231

  • Characterization of Two Melanin-Concentrating Hormone Genes in Zebrafish Reveals Evolutionary and Physiological Links with the Mammalian MCH System JOURNAL OF COMPARATIVE NEUROLOGY Berman, J. R., Skariah, G., Maro, G. S., Mignot, E., Mourrain, P. 2009; 517 (5): 695-710

    Abstract

    Melanin-concentrating hormone (MCH) regulates feeding and complex behaviors in mammals and pigmentation in fish. The relationship between fish and mammalian MCH systems is not well understood. Here, we identify and characterize two MCH genes in zebrafish, Pmch1 and Pmch2. Whereas Pmch1 and its corresponding MCH1 peptide resemble MCH found in other fish, the zebrafish Pmch2 gene and MCH2 peptide share genomic structure, synteny, and high peptide sequence homology with mammalian MCH. Zebrafish Pmch genes are expressed in closely associated but non-overlapping neurons within the hypothalamus, and MCH2 neurons send numerous projections to multiple MCH receptor-rich targets with presumed roles in sensory perception, learning and memory, arousal, and homeostatic regulation. Preliminary functional analysis showed that whereas changes in zebrafish Pmch1 expression correlate with pigmentation changes, the number of MCH2-expressing neurons increases in response to chronic food deprivation. These findings demonstrate that zebrafish MCH2 is the putative structural and functional ortholog of mammalian MCH and help elucidate the nature of MCH evolution among vertebrates.

    View details for DOI 10.1002/cne.22171

    View details for Web of Science ID 000271112000011

    View details for PubMedID 19827161

  • Live analysis of endodermal layer formation identifies random walk as a novel gastrulation movement CURRENT BIOLOGY Pezeron, G., Mourrain, P., Courty, S., Ghislain, J., Becker, T. S., Rosa, F. M., David, N. B. 2008; 18 (4): 276-281

    Abstract

    During gastrulation, dramatic movements rearrange cells into three germ layers expanded over the entire embryo [1-3]. In fish, both endoderm and mesoderm are specified as a belt at the embryo margin. Mesodermal layer expansion is achieved through the combination of two directed migrations. The outer ring of precursors moves toward the vegetal pole and continuously seeds mesodermal cells inside the embryo, which then reverse their movement in the direction of the animal pole [3-6]. Unlike mesoderm, endodermal cells internalize at once and must therefore adopt a different strategy to expand over the embryo [7, 8]. With live imaging of YFP-expressing zebrafish endodermal cells, we demonstrate that in contrast to mesoderm, internalized endodermal cells display a nonoriented/noncoordinated movement fit by a random walk that rapidly disperses them over the yolk surface. Transplantation experiments reveal that this behaviour is largely cell autonomous, induced by TGF-beta/Nodal, and dependent on the downstream effector Casanova. At midgastrulation, endodermal cells switch to a convergence movement. We demonstrate that this switch is triggered by environmental cues. These results uncover random walk as a novel Nodal-induced gastrulation movement and as an efficient strategy to transform a localized cell group into a layer expanded over the embryo.

    View details for DOI 10.1016/j.cub.2008.01.028

    View details for Web of Science ID 000253470300027

    View details for PubMedID 18291651

  • Rasl11b Knock Down in Zebrafish Suppresses One-Eyed-Pinhead Mutant Phenotype PLOS ONE Pezeron, G., Lambert, G., Dickmeis, T., Straehle, U., Rosa, F. M., Mourrain, P. 2008; 3 (1)

    Abstract

    The EGF-CFC factor Oep/Cripto1/Frl1 has been implicated in embryogenesis and several human cancers. During vertebrate development, Oep/Cripto1/Frl1 has been shown to act as an essential coreceptor in the TGFbeta/Nodal pathway, which is crucial for germ layer formation. Although studies in cell cultures suggest that Oep/Cripto1/Frl1 is also implicated in other pathways, in vivo it is solely regarded as a Nodal coreceptor. We have found that Rasl11b, a small GTPase belonging to a Ras subfamily of putative tumor suppressor genes, modulates Oep function in zebrafish independently of the Nodal pathway. rasl11b down regulation partially rescues endodermal and prechordal plate defects of zygotic oep(-/-) mutants (Zoep). Rasl11b inhibitory action was only observed in oep-deficient backgrounds, suggesting that normal oep expression prevents Rasl11b function. Surprisingly, rasl11b down regulation does not rescue mesendodermal defects in other Nodal pathway mutants, nor does it influence the phosphorylation state of the downstream effector Smad2. Thus, Rasl11b modifies the effect of Oep on mesendoderm development independently of the main known Oep output: the Nodal signaling pathway. This data suggests a new branch of Oep signaling that has implications for germ layer development, as well as for studies of Oep/Frl1/Cripto1 dysfunction, such as that found in tumors.

    View details for DOI 10.1371/journal.pone.0001434

    View details for Web of Science ID 000260503800006

    View details for PubMedID 18197245

  • Comparative expression of p2x receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish BRAIN RESEARCH Appelbaum, L., Skariah, G., Mourrain, P., Mignot, E. 2007; 1174: 66-75

    Abstract

    The hypocretin/orexin (HCRT/ORX) excitatory neuropeptides are expressed in a small population of lateral hypothalamic cells in mammals and fish. In humans, loss of these cells causes the sleep disorder narcolepsy. Identification of genes expressed in HCRT-producing cells may be revealing as to the regulation of sleep and the pathophysiology of narcolepsy. In this study, in situ hybridization analyses were performed to characterize the expression pattern of receptors and enzyme, which regulate ATP-mediated transmission in hypocretin cells of zebrafish larvae. The zebrafish cDNA encoding the ecto-nucleoside triphosphate diphosphohydrolase 3 (ENTPD3/NTPDase3) was isolated. This transcript was found to be expressed in zebrafish HCRT cells as previously reported in mammals. It was also expressed in the cranial nerves (gV, gVII, gIV and gX) and in primary sensory neurons (i.e., Rohon-Beard neurons) in the spinal cord. The expression of known zebrafish p2rx purinergic receptor family members was next studied and found to overlap with the entpd3 expression pattern. Specifically, p2rx2, p2rx3.1, p2rx3.2 and p2rx8 were expressed in the trigeminal ganglia and subsets of Rohon-Beard neurons. In contrast to mammals, p2rx2 was not expressed in HCRT cells; rather, p2rx8 was expressed with entpd3 in this hypothalamic region. The conservation of expression of these genes in HCRT cells and sensory neurons across vertebrates suggests an important role for ATP mediated transmission in the regulation of sleep and the processing of sensory inputs.

    View details for DOI 10.1016/j.brainres.2007.06.103

    View details for Web of Science ID 000250612200008

    View details for PubMedID 17868657

  • Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants PLOS BIOLOGY Yokogawa, T., Marin, W., Faraco, J., Pezeron, G., Appelbaum, L., Zhang, J., Rosa, F., Mourrain, P., Mignot, E. 2007; 5 (10): 2379-2397

    Abstract

    Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin) in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.

    View details for DOI 10.1371/journal.pbio.0050277

    View details for Web of Science ID 000251072700025

    View details for PubMedID 17941721

  • Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates GENOME RESEARCH Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A. Z., Engstrom, P. G., Fredman, D., Akalin, A., Caccamo, M., Sealy, I., Howe, K., Ghislain, J., Pezeron, G., Mourrain, P., Ellingsen, S., Oates, A. C., Thisse, C., Thisse, B., Foucher, I., Adolf, B., Geling, A., Lenhard, B., Becker, T. S. 2007; 17 (5): 545-555

    Abstract

    We report evidence for a mechanism for the maintenance of long-range conserved synteny across vertebrate genomes. We found the largest mammal-teleost conserved chromosomal segments to be spanned by highly conserved noncoding elements (HCNEs), their developmental regulatory target genes, and phylogenetically and functionally unrelated "bystander" genes. Bystander genes are not specifically under the control of the regulatory elements that drive the target genes and are expressed in patterns that are different from those of the target genes. Reporter insertions distal to zebrafish developmental regulatory genes pax6.1/2, rx3, id1, and fgf8 and miRNA genes mirn9-1 and mirn9-5 recapitulate the expression patterns of these genes even if located inside or beyond bystander genes, suggesting that the regulatory domain of a developmental regulatory gene can extend into and beyond adjacent transcriptional units. We termed these chromosomal segments genomic regulatory blocks (GRBs). After whole genome duplication in teleosts, GRBs, including HCNEs and target genes, were often maintained in both copies, while bystander genes were typically lost from one GRB, strongly suggesting that evolutionary pressure acts to keep the single-copy GRBs of higher vertebrates intact. We show that loss of bystander genes and other mutational events suffered by duplicated GRBs in teleost genomes permits target gene identification and HCNE/target gene assignment. These findings explain the absence of evolutionary breakpoints from large vertebrate chromosomal segments and will aid in the recognition of position effect mutations within human GRBs.

    View details for DOI 10.1101/gr.6086307

    View details for Web of Science ID 000246297900001

    View details for PubMedID 17387144

  • A single transgene locus triggers both transcriptional and post-transcriptional silencing through double-stranded RNA production PLANTA Mourrain, P., van Blokland, R., Kooter, J. M., Vaucheret, H. 2007; 225 (2): 365-379

    Abstract

    Silencing of a target locus by an unlinked silencing locus can result from transcription inhibition (transcriptional gene silencing; TGS) or mRNA degradation (post-transcriptional gene silencing; PTGS), owing to the production of double-stranded RNA (dsRNA) corresponding to promoter or transcribed sequences, respectively. The involvement of distinct cellular components in each process suggests that dsRNA-induced TGS and PTGS likely result from the diversification of an ancient common mechanism. However, a strict comparison of TGS and PTGS has been difficult to achieve because it generally relies on the analysis of distinct silencing loci. We describe a single transgene locus that triggers both TGS and PTGS, owing to the production of dsRNA corresponding to promoter and transcribed sequences of different target genes. We describe mutants and epigenetic variants derived from this locus and propose a model for the production of dsRNA. Also, we show that PTGS, but not TGS, is graft-transmissible, which together with the sensitivity of PTGS, but not TGS, to RNA viruses that replicate in the cytoplasm, suggest that the nuclear compartmentalization of TGS is responsible for cell-autonomy. In contrast, we contribute local and systemic trafficking of silencing signals and sensitivity to viruses to the cytoplasmic steps of PTGS and to amplification steps that require high levels of target mRNAs.

    View details for DOI 10.1007/s00425-006-0366-1

    View details for Web of Science ID 000242855000010

    View details for PubMedID 16924537

  • Regulation of hypocretin (orexin) expression in embryonic zebrafish JOURNAL OF BIOLOGICAL CHEMISTRY Faraco, J. H., Appelbaum, L., Marin, W., Gaus, S. E., Mourrain, P., Mignot, E. 2006; 281 (40): 29753-29761

    Abstract

    Hypocretins/orexins are neuropeptides involved in the regulation of sleep and energy balance in mammals. Conservation of gene sequence, hypothalamic localization of cell bodies, and projection patterns in adult zebrafish suggest that the architecture and function of the hypocretin system are conserved in fish. We report on the complete genomic structure of the zebrafish and Tetraodon hypocretin genes and the complete predicted hypocretin protein sequences from five teleosts. Using whole mount in situ hybridization, we have traced the development of hypocretin cells in zebrafish from onset of expression at 22 h post-fertilization through the first week of development. Promoter elements of similar size from zebrafish and Tetraodon were capable of driving efficient and specific expression of enhanced green fluorescent protein in developing zebrafish embryos, thus defining a minimal promoter region able to accurately mimic the native hypocretin pattern. This enhanced green fluorescent protein expression also revealed a complex pattern of projections within the hypothalamus, to the midbrain, and to the spinal cord. To further analyze the promoter, a series of deletion and substitution constructs were injected into embryos, and resulting promoter activity was monitored in the first week of development. A critical region of 250 base pairs was identified containing a core 13-base pair element essential for hypocretin expression.

    View details for DOI 10.1074/jbc.M605811200

    View details for Web of Science ID 000240896300037

    View details for PubMedID 16867991

  • Duplicate sfrp1 genes in zebrafish: sfrp1a is dynamically expressed in the developing central nervous system, gut and lateral line GENE EXPRESSION PATTERNS Pezeron, G., Anselme, I., Laplante, M., Ellingsen, S., Becker, T. S., Rosa, F. M., Charnay, P., Schneider-Maunoury, S., Mourrain, P., Ghislain, J. 2006; 6 (8): 835-842

    Abstract

    The secreted frizzled-related proteins (Sfrp) are a family of soluble proteins with diverse biological functions having the capacity to bind Wnt ligands, to modulate Wnt signalling, and to signal directly via the Wnt receptor, Frizzled. In an enhancer trap screen for embryonic expression in zebrafish we identified an sfrp1 gene. Previous studies suggest an important role for sfrp1 in eye development, however, no data have been reported using the zebrafish model. In this paper, we describe duplicate sfrp1 genes in zebrafish and present a detailed analysis of the expression profile of both genes. Whole mount in situ hybridisation analyses of sfrp1a during embryonic and larval development revealed a dynamic expression profile, including: the central nervous system, where sfrp1a was regionally expressed throughout the brain and developing eye; the posterior gut, from the time of endodermal cell condensation; the lateral line, where sfrp1a was expressed in the migrating primordia and interneuromast cells that give rise to the sensory organs. Other sites included the blastoderm, segmenting mesoderm, olfactory placode, developing ear, pronephros and fin-bud. We have also analysed sfrp1b expression during embryonic development. Surprisingly this gene exhibited a divergent expression profile being limited to the yolk syncytium under the elongating tail-bud, which later covered the distal yolk extension, and transiently in the tail-bud mesenchyme. Overall, our studies provide a basis for future analyses of these developmentally important factors using the zebrafish model.

    View details for DOI 10.1016/j.modgep.2006.02.002

    View details for Web of Science ID 000240801600009

    View details for PubMedID 16545988

  • Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats PLANT CELL Probst, A. V., Fagard, M., Proux, F., Mourrain, P., Boutet, S., Earley, K., Lawrence, R. J., Pikaard, C. S., Murfett, J., Furner, I., Vaucheret, H., Scheid, O. M. 2004; 16 (4): 1021-1034

    Abstract

    Histone acetylation and deacetylation are connected with transcriptional activation and silencing in many eukaryotic organisms. Gene families for enzymes that accomplish these modifications show a surprising multiplicity in sequence and expression levels, suggesting a high specificity for different targets. We show that mutations in Arabidopsis (Arabidopsis thaliana) HDA6, a putative class I histone deacetylase gene, result in loss of transcriptional silencing from several repetitive transgenic and endogenous templates. Surprisingly, total levels of histone H4 acetylation are only slightly affected, whereas significant hyperacetylation is restricted to the nucleolus organizer regions that contain the rDNA repeats. This switch coincides with an increase of histone 3 methylation at Lys residue 4, a modified DNA methylation pattern, and a concomitant decondensation of the chromatin. These results indicate that HDA6 might play a role in regulating activity of rRNA genes, and this control might be functionally linked to silencing of other repetitive templates and to its previously assigned role in RNA-directed DNA methylation.

    View details for DOI 10.1105/tpc.018754

    View details for Web of Science ID 000220731900022

    View details for PubMedID 15037732

  • Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance PLANT CELL Morel, J. B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., Vaucheret, H. 2002; 14 (3): 629-639

    Abstract

    Transgene-induced post-transcriptional gene silencing (PTGS) results from specific degradation of RNAs that are homologous with the transgene transcribed sequence. This phenomenon, also known as cosuppression in plants and quelling in fungi, resembles RNA interference (RNAi) in animals. Indeed, cosuppression/quelling/RNAi require related PAZ/PIWI proteins (AGO1/QDE-2/RDE-1), indicating that these mechanisms are related. Unlike Neurospora crassa qde-2 and Caenorhabditis elegans rde-1 mutants, which are morphologically normal, the 24 known Arabidopsis ago1 mutants display severe developmental abnormalities and are sterile. Here, we report the isolation of hypomorphic ago1 mutants, including fertile ones. We show that these hypomorphic ago1 mutants are defective for PTGS, like null sgs2, sgs3, and ago1 mutants, suggesting that PTGS is more sensitive than development to perturbations in AGO1. Conversely, a mutation in ZWILLE/PINHEAD, another member of the Arabidopsis AGO1 gene family, affects development but not PTGS. Similarly, mutations in ALG-1 and ALG-2, two members of the C. elegans RDE-1 gene family, affect development but not RNAi, indicating that the control of PTGS/RNAi and development by PAZ/PIWI proteins can be uncoupled. Finally, we show that hypomorphic ago1 mutants are hypersensitive to virus infection, confirming the hypothesis that in plants PTGS is a mechanism of defense against viruses.

    View details for DOI 10.1105/tpc.010358

    View details for Web of Science ID 000174788700011

    View details for PubMedID 11910010

  • Molecular integration of casanova in the Nodal signalling pathway controlling endoderm formation DEVELOPMENT Aoki, T. O., David, N. B., Minchiotti, G., Saint-Etienne, L., Dickmeis, T., Persico, G. M., Strahle, U., Mourrain, P., Rosa, F. M. 2002; 129 (2): 275-286

    Abstract

    Endoderm originates from a large endomesodermal field requiring Nodal signalling. The mechanisms that ensure segregation of endoderm from mesoderm are not fully understood. We first show that the timing and dose of Nodal activation are crucial for endoderm formation and the endoderm versus mesoderm fate choice, because sustained Nodal signalling is required to ensure endoderm formation but transient signalling is sufficient for mesoderm formation. In zebrafish, downstream of Nodal signals, three genes encoding transcription factors (faust, bonnie and clyde and the recently identified gene casanova) are required for endoderm formation and differentiation. However their positions within the pathway are not completely established. In the present work, we show that casanova is the earliest specification marker for endodermal cells and that its expression requires bonnie and clyde. Furthermore, we have analysed the molecular activities of casanova on endoderm formation and found that it can induce endodermal markers and repress mesodermal markers during gastrulation, as well as change the fate of marginal blastomeres to endoderm. Overexpression of casanova also restores endoderm markers in the absence of Nodal signalling. In addition, casanova efficiently restores later endodermal differentiation in these mutants, but this process requires, in addition, a partial activation of Nodal signalling.

    View details for Web of Science ID 000173759100001

    View details for PubMedID 11807021

  • Identification of nodal signaling targets by array analysis of induced complex probes DEVELOPMENTAL DYNAMICS Dickmeis, T., Aanstad, P., Clark, M., Fischer, N., Herwig, R., Mourrain, P., Blader, P., ROSA, F., Lehrach, H., Strahle, U. 2001; 222 (4): 571-580

    Abstract

    Nodal signaling controls germ layer formation, left-right asymmetry, and patterning of the brain in the vertebrate embryo. Cellular responses to Nodal signals are complex and include changes in gene expression, cell morphology, and migratory behavior. Only little is known about the genes regulated by Nodal signaling. We designed a subtractive screening strategy by using a constitutively active Nodal receptor to identify putative target genes of Nodal signals in the early gastrula of zebrafish embryos. By quantitative analysis of macro-array hybridizations, 132 genes corresponding to 1.4% of genes on the entire macro-array were identified, which were enriched in the Nodal-induced probe pool. These genes encode components of signal transduction pathways, transcription regulators, proteins involved in protein metabolism but also cytoskeletal components and metabolic enzymes, suggesting dramatic changes of cell physiology in gastrula cells in response to Nodal signals.

    View details for Web of Science ID 000172478100004

    View details for PubMedID 11748827

  • A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene GENES & DEVELOPMENT Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark, M., Strahle, U., ROSA, F. 2001; 15 (12): 1487-1492

    Abstract

    casanova (cas) mutant zebrafish embryos lack endoderm and develop cardia bifida. In a substractive screen for Nodal-responsive genes, we isolated an HMG box-containing gene, 10J3, which is expressed in the endoderm. The cas phenotype is rescued by overexpression of 10J3 and can be mimicked by 10J3-directed morpholinos. Furthermore, we identified a mutation within 10J3 coding sequence that cosegregates with the cas phenotype, clearly demonstrating that cas is encoded by 10J3. Epistasis experiments are consistent with an instructive role for cas in endoderm formation downstream of Nodal signals and upstream of sox17. In the absence of cas activity, endoderm progenitors differentiate into mesodermal derivatives. Thus, cas is an HMG box-containing gene involved in the fate decision between endoderm and mesoderm that acts downstream of Nodal signals.

    View details for Web of Science ID 000169334200004

    View details for PubMedID 11410529

  • DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis CURRENT BIOLOGY Morel, J. B., Mourrain, P., Beclin, C., Vaucheret, H. 2000; 10 (24): 1591-1594

    Abstract

    In plants, transgenes can be silenced at both the transcriptional [1] and post-transcriptional levels [2]. Methylation of the transgene promoter correlates with transcriptional gene silencing (TGS) [3] whereas methylation of the coding sequence is associated with post-transcriptional gene silencing (PTGS) [4]. In animals, TGS requires methylation and changes in chromatin conformation [5]. The involvement of methylation during PTGS in plants is unclear and organisms with non-methylated genomes such as Caenorhabditis elegans or Drosophila can display RNA interference (RNAi), a silencing process mechanistically related to PTGS [6]. Here, we crossed Arabidopsis mutants impaired in a SWI2/SNF2 chromatin component (ddm1 [7]) or in the major DNA methyltransferase (met1 [8] and E. Richards, personal communication) with transgenic lines in which a reporter consisting of the cauliflower mosaic virus 35S promoter fused to the beta-glucuronidase (GUS) gene (35S-GUS) was silenced by TGS or PTGS. We observed an efficient release of 35S-GUS TGS by both the ddm1 and met1 mutations and stochastic release of 35S-GUS PTGS by these two mutations during development. These results show that DNA methylation and chromatin structure are common regulators of TGS and PTGS.

    View details for Web of Science ID 000166807100020

    View details for PubMedID 11137011

  • Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance CELL Mourrain, P., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Jouette, D., Lacombe, A. M., Nikic, S., Picault, N., Remoue, K., Sanial, M., Vo, T. A., Vaucheret, H. 2000; 101 (5): 533-542

    Abstract

    Posttranscriptional gene silencing (PTGS) in plants resuits from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N. crassa QDE-1, controlling quelling, and C. elegans EGO-1, controlling RNAi. In contrast, SGS3 shows no significant similarity with any known or putative protein, thus defining a specific step of PTGS in plants. Both sgs2 and sgs3 mutants show enhanced susceptibility to virus, definitively proving that PTGS is an antiviral defense mechanism that can also target transgene RNA for degradation.

    View details for Web of Science ID 000087375400010

    View details for PubMedID 10850495

  • Plant viral suppressors of post-transcriptional silencing do not suppress transcriptional silencing PLANT JOURNAL Marathe, R., Smith, T. H., Anandalakshmi, R., Bowman, L. H., Fagard, M., Mourrain, P., Vaucheret, H., Vance, V. B. 2000; 22 (1): 51-59

    Abstract

    Homology-dependent gene silencing is a regulatory mechanism that limits RNA accumulation from affected loci either by suppression of transcription (transcriptional gene silencing, TGS) or by activation of a sequence-specific RNA degradation process (post-transcriptional gene silencing, PTGS). The P1/HC-Pro sequence of plant potyviruses and the 2b gene of the cucumber mosaic virus have been shown to interfere with PTGS. The ability of these viral suppressors of PTGS to interfere with TGS was tested using the 271 locus which imposes TGS on transgenes under 35S or 19S promoters and PTGS on the endogenous nitrite reductase gene (Nii). Both P1/HC-Pro and 2b reversed PTGS of Nii genes in 271-containing tobacco plants, but failed to reverse TGS of 35S-GUS transgenes in the same plant. P1/HC-Pro expression from a transgene also failed to suppress either the initiation or maintenance of TGS imposed by the NOSpro-silencing locus, H2. These results indicate that PTGS and TGS operate through unlinked pathways or that P1/HC-Pro and 2b interfere at step(s) in PTGS that are downstream of any common components in the two pathways. The data suggest a simple assay to identify post-transcriptionally silenced transgenic lines with the potential to be stably converted to high expressing lines.

    View details for Web of Science ID 000086930100006

    View details for PubMedID 10792820

  • Are gene silencing mutants good tools for reliable transgene expression or reliable silencing of endogenous genes in plants? Genetic engineering Mourrain, P., Béclin, C., Vaucheret, H. 2000; 22: 155-170

    View details for PubMedID 11501375

  • Transgene-induced gene silencing in plants PLANT JOURNAL Vaucheret, H., Beclin, C., Elmayan, T., Feuerbach, F., Godon, C., Morel, J. B., Mourrain, P., Palauqui, J. C., Vernhettes, S. 1998; 16 (6): 651-659

    View details for Web of Science ID 000078001900001

    View details for PubMedID 10069073

  • Arabidopsis mutants impaired in cosuppression PLANT CELL Elmayan, T., Balzergue, S., Beon, F., Bourdon, V., Daubremet, J., Guenet, Y., Mourrain, P., Palauqui, J. C., Vernhettes, S., Vialle, T., Wostrikoff, K., Vaucheret, H. 1998; 10 (10): 1747-1757

    Abstract

    Post-transcriptional gene silencing (cosuppression) results in the degradation of RNA after transcription. A transgenic Arabidopsis line showing post-transcriptional silencing of a 35S-uidA transgene and uidA-specific methylation was mutagenized using ethyl methanesulfonate. Six independent plants were isolated in which uidA mRNA accumulation and beta-glucuronidase activity were increased up to 3500-fold, whereas the transcription rate of the 35S-uidA transgene was increased only up to threefold. These plants each carried a recessive monogenic mutation that is responsible for the release of silencing. These mutations defined two genetic loci, called sgs1 and sgs2 (for suppressor of gene silencing). Transgene methylation was distinctly modified in sgs1 and sgs2 mutants. However, methylation of centromeric repeats was not affected, indicating that sgs mutants differ from ddm (for decrease in DNA methylation) and som (for somniferous) mutants. Indeed, unlike ddm and som mutations, sgs mutations were not able to release transcriptional silencing of a 35S-hpt transgene. Conversely, both sgs1 and sgs2 mutations were able to release cosuppression of host Nia genes and 35S-Nia2 transgenes. These results therefore indicate that sgs mutations act in trans to impede specifically transgene-induced post-transcriptional gene silencing.

    View details for Web of Science ID 000076588500014

    View details for PubMedID 9761800

  • ActA is a dimer PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Mourrain, P., Lasa, I., Gautreau, A., Gouin, E., PUGSLEY, A., Cossart, P. 1997; 94 (19): 10034-10039

    Abstract

    ActA, a surface protein of Listeria monocytogenes, is able to induce continuous actin polymerization at the rear of the bacterium, in the cytosol of the infected cells. Its N-terminal domain is sufficient to induce actin tail formation and movement. Here, we demonstrate, using the yeast two-hybrid system, that the N-terminal domain of ActA may form homodimers. By using chemical cross-linking to explore the possibility that ActA could be a multimer on the surface of the bacteria, we show that ActA is a dimer. Cross-linking experiments on various L. monocytogenes strains expressing different ActA variants demonstrated that the region spanning amino acids 97-126, and previously identified as critical for actin tail formation, is also critical for dimer formation. A model of actin polymerization by L. monocytogenes, involving the ActA dimer, is presented.

    View details for Web of Science ID A1997XX39900008

    View details for PubMedID 9294158

  • Expression of contact, a new zebrafish DVR member, marks mesenchymal cell lineages in the developing pectoral fins and head and is regulated by retinoic acid MECHANISMS OF DEVELOPMENT Bruneau, S., Mourrain, P., Rosa, F. M. 1997; 65 (1-2): 163-173

    Abstract

    Contact, a new zebrafish transforming growth factor-beta (TGF-beta) member is most closely related to mouse GDF5 and to human CDMP-1 responsible, when mutated, for limb brachypodism phenotype and Hunter-Thompson syndrome, respectively. Contact exhibits a dynamic spatial expression pattern in the pharyngeal arches and the pectoral fin buds that much prefigures cartilage formation. Within the fin buds, contact expression is detected in the proximal mesenchyme from which the endoskeleton will develop. Exogeneously applied retinoic acid (RA) induces duplication of the pectoral fin rudiment in zebrafish embryos as well as contact expression along the proximal margin of the fin mesenchyme showing that both endoskeleton and exoskeleton can be duplicated.

    View details for Web of Science ID A1997XM19800013

    View details for PubMedID 9256353

  • Nitrate reductase and nitrite reductase as targets to study gene silencing phenomena in transgenic plants EUPHYTICA Vaucheret, H., Palauqui, J. C., Mourrain, P., Elmayan, T. 1997; 93 (2): 195-200

Stanford Medicine Resources: