Professional Education

  • Bachelor of Science, University of California Davis (2002)
  • Doctor of Philosophy, Stanford University, BIOL-PHD (2013)
  • Bachelor of Science, University of California Davis, Biochem & Molecular Biology (2002)

Stanford Advisors


All Publications

  • A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36 GENES & DEVELOPMENT Cheng, Z., Cheung, P., Kuo, A. J., Yukl, E. T., Wilmot, C. M., Gozani, O., Patel, D. J. 2014; 28 (16): 1758-1771


    The dynamic reversible methylation of lysine residues on histone proteins is central to chromatin biology. Key components are demethylase enzymes, which remove methyl moieties from lysine residues. KDM2A, a member of the Jumonji C domain-containing histone lysine demethylase family, specifically targets lower methylation states of H3K36. Here, structural studies reveal that H3K36 specificity for KDM2A is mediated by the U-shaped threading of the H3K36 peptide through a catalytic groove within KDM2A. The side chain of methylated K36 inserts into the catalytic pocket occupied by Ni(2+) and cofactor, where it is positioned and oriented for demethylation. Key residues contributing to K36me specificity on histone H3 are G33 and G34 (positioned within a narrow channel), P38 (a turn residue), and Y41 (inserts into its own pocket). Given that KDM2A was found to also bind the H3K36me3 peptide, we postulate that steric constraints could prevent α-ketoglutarate from undergoing an "off-line"-to-"in-line" transition necessary for the demethylation reaction. Furthermore, structure-guided substitutions of residues in the KDM2A catalytic pocket abrogate KDM2A-mediated functions important for suppression of cancer cell phenotypes. Together, our results deduce insights into the molecular basis underlying KDM2A regulation of the biologically important methylated H3K36 mark.

    View details for DOI 10.1101/gad.246561.114

    View details for Web of Science ID 000341071100004

    View details for PubMedID 25128496

  • A General Molecular Affinity Strategy for Global Detection and Proteomic Analysis of Lysine Methylation MOLECULAR CELL Moore, K. E., Carlson, S. M., Camp, N. D., Cheung, P., James, R. G., Chua, K. F., Wolf-Yadlin, A., Gozani, O. 2013; 50 (3): 444-456


    Lysine methylation of histone proteins regulates chromatin dynamics and plays important roles in diverse physiological and pathological processes. However, beyond histone proteins, the proteome-wide extent of lysine methylation remains largely unknown. We have engineered the naturally occurring MBT domain repeats of L3MBTL1 to serve as a universal affinity reagent for detecting, enriching, and identifying proteins carrying a mono- or dimethylated lysine. The domain is broadly specific for methylated lysine ("pan-specific") and can be applied to any biological system. We have used our approach to demonstrate that SIRT1 is a substrate of the methyltransferase G9a both in vitro and in cells, to perform proteome-wide detection and enrichment of methylated proteins, and to identify candidate in-cell substrates of G9a and the related methyltransferase GLP. Together, our results demonstrate a powerful new approach for global and quantitative analysis of methylated lysine, and they represent the first systems biology understanding of lysine methylation.

    View details for DOI 10.1016/j.molcel.2013.03.005

    View details for Web of Science ID 000319183500015

  • The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome NATURE Kuo, A. J., Song, J., Cheung, P., Ishibe-Murakami, S., Yamazoe, S., Chen, J. K., Patel, D. J., Gozani, O. 2012; 484 (7392): 115-?


    The recognition of distinctly modified histones by specialized 'effector' proteins constitutes a key mechanism for transducing molecular events at chromatin to biological outcomes. Effector proteins influence DNA-templated processes, including transcription, DNA recombination and DNA repair; however, no effector functions have yet been identified within the mammalian machinery that regulate DNA replication. Here we show that ORC1--a component of ORC (origin of replication complex), which mediates pre-DNA replication licensing--contains a bromo adjacent homology (BAH) domain that specifically recognizes histone H4 dimethylated at lysine 20 (H4K20me2). Recognition of H4K20me2 is a property common to BAH domains present within diverse metazoan ORC1 proteins. Structural studies reveal that the specificity of the BAH domain for H4K20me2 is mediated by a dynamic aromatic dimethyl-lysine-binding cage and multiple intermolecular contacts involving the bound peptide. H4K20me2 is enriched at replication origins, and abrogating ORC1 recognition of H4K20me2 in cells impairs ORC1 occupancy at replication origins, ORC chromatin loading and cell-cycle progression. Mutation of the ORC1 BAH domain has been implicated in the aetiology of Meier-Gorlin syndrome (MGS), a form of primordial dwarfism, and ORC1 depletion in zebrafish results in an MGS-like phenotype. We find that wild-type human ORC1, but not ORC1-H4K20me2-binding mutants, rescues the growth retardation of orc1 morphants. Moreover, zebrafish depleted of H4K20me2 have diminished body size, mirroring the phenotype of orc1 morphants. Together, our results identify the BAH domain as a novel methyl-lysine-binding module, thereby establishing the first direct link between histone methylation and the metazoan DNA replication machinery, and defining a pivotal aetiological role for the canonical H4K20me2 mark, via ORC1, in primordial dwarfism.

    View details for DOI 10.1038/nature10956

    View details for Web of Science ID 000302343400045

    View details for PubMedID 22398447

  • Reversible cell-cycle entry in adult kidney podocytes through regulated control of telomerase and Wnt signaling. Nature medicine Shkreli, M., Sarin, K. Y., Pech, M. F., Papeta, N., Chang, W., Brockman, S. A., Cheung, P., Lee, E., Kuhnert, F., Olson, J. L., Kuo, C. J., Gharavi, A. G., D'Agati, V. D., Artandi, S. E. 2012; 18 (1): 111-119


    Mechanisms of epithelial cell renewal remain poorly understood in the mammalian kidney, particularly in the glomerulus, a site of cellular damage in chronic kidney disease. Within the glomerulus, podocytes--differentiated epithelial cells crucial for filtration--are thought to lack substantial capacity for regeneration. Here we show that podocytes rapidly lose differentiation markers and enter the cell cycle in adult mice in which the telomerase protein component TERT is conditionally expressed. Transgenic TERT expression in mice induces marked upregulation of Wnt signaling and disrupts glomerular structure, resulting in a collapsing glomerulopathy resembling those in human disease, including HIV-associated nephropathy (HIVAN). Human and mouse HIVAN kidneys show increased expression of TERT and activation of Wnt signaling, indicating that these are general features of collapsing glomerulopathies. Silencing transgenic TERT expression or inhibiting Wnt signaling through systemic expression of the Wnt inhibitor Dkk1 in either TERT transgenic mice or in a mouse model of HIVAN results in marked normalization of podocytes, including rapid cell-cycle exit, re-expression of differentiation markers and improved filtration barrier function. These data reveal an unexpected capacity of podocytes to reversibly enter the cell cycle, suggest that podocyte renewal may contribute to glomerular homeostasis and implicate the telomerase and Wnt-β-catenin pathways in podocyte proliferation and disease.

    View details for DOI 10.1038/nm.2550

    View details for PubMedID 22138751

  • NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming MOLECULAR CELL Kuo, A. J., Cheung, P., Chen, K., Zee, B. M., Kioi, M., Lauring, J., Xi, Y., Park, B. H., Shi, X., Garcia, B. A., Li, W., Gozani, O. 2011; 44 (4): 609-620


    The histone lysine methyltransferase NSD2 (MMSET/WHSC1) is implicated in diverse diseases and commonly overexpressed in multiple myeloma due to a recurrent t(4;14) chromosomal translocation. However, the precise catalytic activity of NSD2 is obscure, preventing progress in understanding how this enzyme influences chromatin biology and myeloma pathogenesis. Here, we show that dimethylation of histone H3 at lysine 36 (H3K36me2) is the principal chromatin-regulatory activity of NSD2. Catalysis of H3K36me2 by NSD2 is sufficient for gene activation. In t(4;14)-positive myeloma cells, the normal genome-wide and gene-specific distribution of H3K36me2 is obliterated, creating a chromatin landscape that selects for a transcription profile favorable for myelomagenesis. Catalytically active NSD2 confers xenograft tumor formation upon t(4;14)-negative cells and promotes oncogenic transformation of primary cells in an H3K36me2-dependent manner. Together, our findings establish H3K36me2 as the primary product generated by NSD2 and demonstrate that genomic disorganization of this canonical chromatin mark by NSD2 initiates oncogenic programming.

    View details for DOI 10.1016/j.molcel.2011.08.042

    View details for Web of Science ID 000297387800012

    View details for PubMedID 22099308

  • Lysine methylation of the NF-kappa B subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-kappa B signaling NATURE IMMUNOLOGY Levy, D., Kuo, A. J., Chang, Y., Schaefer, U., Kitson, C., Cheung, P., Espejo, A., Zee, B. M., Liu, C. L., Tangsombatvisit, S., Tennen, R. I., Kuo, A. Y., Tanjing, S., Cheung, R., Chua, K. F., Utz, P. J., Shi, X., Prinjha, R. K., Lee, K., Garcia, B. A., Bedford, M. T., Tarakhovsky, A., Cheng, X., Gozani, O. 2011; 12 (1): 29-U47


    Signaling via the methylation of lysine residues in proteins has been linked to diverse biological and disease processes, yet the catalytic activity and substrate specificity of many human protein lysine methyltransferases (PKMTs) are unknown. We screened over 40 candidate PKMTs and identified SETD6 as a methyltransferase that monomethylated chromatin-associated transcription factor NF-?B subunit RelA at Lys310 (RelAK310me1). SETD6-mediated methylation rendered RelA inert and attenuated RelA-driven transcriptional programs, including inflammatory responses in primary immune cells. RelAK310me1 was recognized by the ankryin repeat of the histone methyltransferase GLP, which under basal conditions promoted a repressed chromatin state at RelA target genes through GLP-mediated methylation of histone H3 Lys9 (H3K9). NF-?B-activation-linked phosphorylation of RelA at Ser311 by protein kinase C-? (PKC-?) blocked the binding of GLP to RelAK310me1 and relieved repression of the target gene. Our findings establish a previously uncharacterized mechanism by which chromatin signaling regulates inflammation programs.

    View details for DOI 10.1038/ni.1968

    View details for Web of Science ID 000285465100010

    View details for PubMedID 21131967

  • The Target of the NSD Family of Histone Lysine Methyltransferases Depends on the Nature of the Substrate JOURNAL OF BIOLOGICAL CHEMISTRY Li, Y., Trojer, P., Xu, C., Cheung, P., Kuo, A., Drury, W. J., Qiao, Q., Neubert, T. A., Xu, R., Gozani, O., Reinberg, D. 2009; 284 (49): 34283-34295


    The NSD (nuclear receptor SET domain-containing) family of histone lysine methyltransferases is a critical participant in chromatin integrity as evidenced by the number of human diseases associated with the aberrant expression of its family members. Yet, the specific targets of these enzymes are not clear, with marked discrepancies being reported in the literature. We demonstrate that NSD2 can exhibit disparate target preferences based on the nature of the substrate provided. The NSD2 complex purified from human cells and recombinant NSD2 both exhibit specific targeting of histone H3 lysine 36 (H3K36) when provided with nucleosome substrates, but histone H4 lysine 44 is the primary target in the case of octamer substrates, irrespective of the histones being native or recombinant. This disparity is negated when NSD2 is presented with octamer targets in conjunction with short single- or double-stranded DNA. Although the octamers cannot form nucleosomes, the target is nonetheless nucleosome-specific as is the product, dimethylated H3K36. This study clarifies in part the previous discrepancies reported with respect to NSD targets. We propose that DNA acts as an allosteric effector of NSD2 such that H3K36 becomes the preferred target.

    View details for DOI 10.1074/jbc.M109.034462

    View details for Web of Science ID 000272165200059

    View details for PubMedID 19808676

  • Epigenome Microarray Platform for Proteome-Wide Dissection of Chromatin-Signaling Networks PLOS ONE Bua, D. J., Kuo, A. J., Cheung, P., Liu, C. L., Migliori, V., Espejo, A., Casadio, F., Bassi, C., Amati, B., Bedford, M. T., Guccione, E., Gozani, O. 2009; 4 (8)


    Knowledge of protein domains that function as the biological effectors for diverse post-translational modifications of histones is critical for understanding how nuclear and epigenetic programs are established. Indeed, mutations of chromatin effector domains found within several proteins are associated with multiple human pathologies, including cancer and immunodeficiency syndromes. To date, relatively few effector domains have been identified in comparison to the number of modifications present on histone and non-histone proteins. Here we describe the generation and application of human modified peptide microarrays as a platform for high-throughput discovery of chromatin effectors and for epitope-specificity analysis of antibodies commonly utilized in chromatin research. Screening with a library containing a majority of the Royal Family domains present in the human proteome led to the discovery of TDRD7, JMJ2C, and MPP8 as three new modified histone-binding proteins. Thus, we propose that peptide microarray methodologies are a powerful new tool for elucidating molecular interactions at chromatin.

    View details for DOI 10.1371/journal.pone.0006789

    View details for Web of Science ID 000269335000031

    View details for PubMedID 19956676

  • Telomerase modulates Wnt signalling by association with target gene chromatin NATURE Park, J., Venteicher, A. S., Hong, J. Y., Choi, J., Jun, S., Shkreli, M., Chang, W., Meng, Z., Cheung, P., Ji, H., McLaughlin, M., Veenstra, T. D., Nusse, R., McCrea, P. D., Artandi, S. E. 2009; 460 (7251): 66-U77


    Stem cells are controlled, in part, by genetic pathways frequently dysregulated during human tumorigenesis. Either stimulation of Wnt/beta-catenin signalling or overexpression of telomerase is sufficient to activate quiescent epidermal stem cells in vivo, although the mechanisms by which telomerase exerts these effects are not understood. Here we show that telomerase directly modulates Wnt/beta-catenin signalling by serving as a cofactor in a beta-catenin transcriptional complex. The telomerase protein component TERT (telomerase reverse transcriptase) interacts with BRG1 (also called SMARCA4), a SWI/SNF-related chromatin remodelling protein, and activates Wnt-dependent reporters in cultured cells and in vivo. TERT serves an essential role in formation of the anterior-posterior axis in Xenopus laevis embryos, and this defect in Wnt signalling manifests as homeotic transformations in the vertebrae of Tert(-/-) mice. Chromatin immunoprecipitation of the endogenous TERT protein from mouse gastrointestinal tract shows that TERT physically occupies gene promoters of Wnt-dependent genes. These data reveal an unanticipated role for telomerase as a transcriptional modulator of the Wnt/beta-catenin signalling pathway.

    View details for DOI 10.1038/nature08137

    View details for Web of Science ID 000267545200030

    View details for PubMedID 19571879

  • Aire employs a histone-binding module to mediate immunological tolerance, linking chromatin regulation with organ-specific autoimmunity PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Koh, A. S., Kuo, A. J., Park, S. Y., Cheung, P., Abramson, J., Bua, D., Carney, D., Shoelson, S. E., Gozani, O., Kingston, R. E., Benoist, C., Mathis, D. 2008; 105 (41): 15878-15883


    Aire induces ectopic expression of peripheral tissue antigens (PTAs) in thymic medullary epithelial cells, which promotes immunological tolerance. Beginning with a broad screen of histone peptides, we demonstrate that the mechanism by which this single factor controls the transcription of thousands of genes involves recognition of the amino-terminal tail of histone H3, but not of other histones, by one of Aire's plant homeodomain (PHD) fingers. Certain posttranslational modifications of H3 tails, notably dimethylation or trimethylation at H3K4, abrogated binding by Aire, whereas others were tolerated. Similar PHD finger-H3 tail-binding properties were recently reported for BRAF-histone deacetylase complex 80 and DNA methyltransferase 3L; sequence alignment, molecular modeling, and biochemical analyses showed these factors and Aire to have structure-function relationships in common. In addition, certain PHD1 mutations underlying the polyendocrine disorder autoimmune polyendocrinopathy-candidiases-ectodermaldystrophy compromised Aire recognition of H3. In vitro binding assays demonstrated direct physical interaction between Aire and nucleosomes, which was in part buttressed by its affinity to DNA. In vivo Aire interactions with chromosomal regions depleted of H3K4me3 were dependent on its H3 tail-binding activity, and this binding was necessary but not sufficient for the up-regulation of genes encoding PTAs. Thus, Aire's activity as a histone-binding module mediates the thymic display of PTAs that promotes self-tolerance and prevents organ-specific autoimmunity.

    View details for DOI 10.1073/pnas.0808470105

    View details for Web of Science ID 000260240900044

    View details for PubMedID 18840680

  • Telomerase-dependent and -independent chromosome healing in mouse embryonic stem cells DNA REPAIR Gao, Q., Reynolds, G. E., Wilcox, A., Miller, D., Cheung, P., Artandi, S. E., Murnane, J. P. 2008; 7 (8): 1233-1249


    Telomeres play an important role in protecting the ends of chromosomes and preventing chromosome fusion. We have previously demonstrated that double-strand breaks near telomeres in mammalian cells result in either the addition of a new telomere at the site of the break, termed chromosome healing, or sister chromatid fusion that initiates chromosome instability. In the present study, we have investigated the role of telomerase in chromosome healing and the importance of chromosome healing in preventing chromosome instability. In embryonic stem cell lines that are wild type for the catalytic subunit of telomerase (TERT), chromosome healing at I-SceI-induced double-strand breaks near telomeres accounted for 22 of 35 rearrangements, with the new telomeres added directly at the site of the break in all but one instance. In contrast, in two TERT-knockout embryonic stem cell lines, chromosome healing accounted for only 1 of 62 rearrangements, with a 23 bp insertion at the site of the sole chromosome-healing event. However, in a third TERT-knockout embryonic stem cell line, 10PTKO-A, chromosome healing was a common event that accounted for 20 of 34 rearrangements. Although this chromosome healing also occurred at the I-SceI site, differences in the microhomology at the site of telomere addition demonstrated that the mechanism was distinct from that in wild-type embryonic stem cell lines. In addition, the newly added telomeres in 10PTKO-A shortened with time in culture, eventually resulting in either telomere elongation through a telomerase-independent mechanism or loss of the subtelomeric plasmid sequences entirely. The combined results demonstrate that chromosome healing can occur through both telomerase-dependent and -independent mechanisms, and that although both mechanisms can prevent degradation and sister chromatid fusion, neither mechanism is efficient enough to prevent sister chromatid fusion from occurring in many cells experiencing double-strand breaks near telomeres.

    View details for DOI 10.1016/j.dnarep.2008.04.004

    View details for Web of Science ID 000258259000006

    View details for PubMedID 18502190

  • SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin NATURE Michishita, E., McCord, R. A., Berber, E., Kioi, M., Padilla-Nash, H., Damian, M., Cheung, P., Kusumoto, R., Kawahara, T. L., Barrett, J. C., Chang, H. Y., Bohr, V. A., Ried, T., Gozani, O., Chua, K. F. 2008; 452 (7186): 492-U16


    The Sir2 deacetylase regulates chromatin silencing and lifespan in Saccharomyces cerevisiae. In mice, deficiency for the Sir2 family member SIRT6 leads to a shortened lifespan and a premature ageing-like phenotype. However, the molecular mechanisms of SIRT6 function are unclear. SIRT6 is a chromatin-associated protein, but no enzymatic activity of SIRT6 at chromatin has yet been detected, and the identity of physiological SIRT6 substrates is unknown. Here we show that the human SIRT6 protein is an NAD+-dependent, histone H3 lysine 9 (H3K9) deacetylase that modulates telomeric chromatin. SIRT6 associates specifically with telomeres, and SIRT6 depletion leads to telomere dysfunction with end-to-end chromosomal fusions and premature cellular senescence. Moreover, SIRT6-depleted cells exhibit abnormal telomere structures that resemble defects observed in Werner syndrome, a premature ageing disorder. At telomeric chromatin, SIRT6 deacetylates H3K9 and is required for the stable association of WRN, the factor that is mutated in Werner syndrome. We propose that SIRT6 contributes to the propagation of a specialized chromatin state at mammalian telomeres, which in turn is required for proper telomere metabolism and function. Our findings constitute the first identification of a physiological enzymatic activity of SIRT6, and link chromatin regulation by SIRT6 to telomere maintenance and a human premature ageing syndrome.

    View details for DOI 10.1038/nature06736

    View details for Web of Science ID 000254341300036

    View details for PubMedID 18337721

  • RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination NATURE Matthews, A. G., Kuo, A. J., Ramon-Maiques, S., Han, S., Champagne, K. S., Ivanov, D., Gallardo, M., Carney, D., Cheung, P., Ciccone, D. N., Walter, K. L., Utz, P. J., Shi, Y., Kutateladze, T. G., Yang, W., Gozani, O., Oettinger, M. A. 2007; 450 (7172): 1106-U18


    Nuclear processes such as transcription, DNA replication and recombination are dynamically regulated by chromatin structure. Eukaryotic transcription is known to be regulated by chromatin-associated proteins containing conserved protein domains that specifically recognize distinct covalent post-translational modifications on histones. However, it has been unclear whether similar mechanisms are involved in mammalian DNA recombination. Here we show that RAG2--an essential component of the RAG1/2 V(D)J recombinase, which mediates antigen-receptor gene assembly--contains a plant homeodomain (PHD) finger that specifically recognizes histone H3 trimethylated at lysine 4 (H3K4me3). The high-resolution crystal structure of the mouse RAG2 PHD finger bound to H3K4me3 reveals the molecular basis of H3K4me3-recognition by RAG2. Mutations that abrogate RAG2's recognition of H3K4me3 severely impair V(D)J recombination in vivo. Reducing the level of H3K4me3 similarly leads to a decrease in V(D)J recombination in vivo. Notably, a conserved tryptophan residue (W453) that constitutes a key structural component of the K4me3-binding surface and is essential for RAG2's recognition of H3K4me3 is mutated in patients with immunodeficiency syndromes. Together, our results identify a new function for histone methylation in mammalian DNA recombination. Furthermore, our results provide the first evidence indicating that disrupting the read-out of histone modifications can cause an inherited human disease.

    View details for DOI 10.1038/nature06431

    View details for Web of Science ID 000251579900092

    View details for PubMedID 18033247

  • Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S-phase progression in vivo PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Rajaraman, S., Choi, J., Cheung, P., Beaudry, V., Moore, H., Artandi, S. E. 2007; 104 (45): 17747-17752


    Telomeres protect chromosome ends and serve as a substrate for telomerase, a reverse transcriptase that adds DNA repeats to the telomere terminus. In the absence of telomerase, telomeres progressively shorten, ultimately leading to telomere uncapping, a structural change at the telomere that activates DNA damage responses and leads to ligation of chromosome ends. Telomere uncapping has been implicated in aging and cancer, yet the precise mechanism of uncapping and its relationship to cell cycle remain to be defined. Here, we show that telomeres uncap in an S-phase-dependent manner in gastrointestinal progenitors of TERT(-/-) mice. We develop an in vivo assay that allows a quantitative kinetic assessment of telomere dysfunction-induced apoptosis and its relationship to cell cycle. By exploiting the mathematical relationship between rates of generation and clearance of apoptotic cells, we show that 86.2 +/- 8.8% of apoptotic gastrointestinal cells undergo programmed cell death either late in S-phase or in G2. Apoptosis is primarily triggered via a signaling cascade from newly uncapped telomeres to the tumor suppressor p53, rather than by chromosome fusion-bridge breakage, because mitotic blockade did not alter the rate of newly generated apoptotic bodies. These data support a model in which rapidly dividing progenitor cells within a tissue with short telomeres are vulnerable to telomere uncapping during or shortly after telomere replication.

    View details for DOI 10.1073/pnas.0706485104

    View details for Web of Science ID 000250897600038

    View details for PubMedID 17965232

  • Regulation of cellular immortalization and steady-state levels of the telomerase reverse transcriptase through its carboxy-terminal domain MOLECULAR AND CELLULAR BIOLOGY Middleman, E. J., Choi, J. K., Venteicher, A. S., Cheung, P., Artandi, S. E. 2006; 26 (6): 2146-2159


    Telomerase maintains cell viability and chromosomal stability through the addition of telomere repeats to chromosome ends. The reactivation of telomerase through the upregulation of TERT, the telomerase protein subunit, is an important step during cancer development, yet TERT protein function and regulation remain incompletely understood. Despite its close sequence similarity to human TERT (hTERT), we find that mouse TERT (mTERT) does not immortalize primary human fibroblasts. Here we exploit these differences in activity to understand TERT protein function by creating chimeric mouse-human TERT proteins. Through the analysis of these chimeric TERT proteins, we find that sequences in the human carboxy-terminal domain are critical for telomere maintenance in human fibroblasts. The substitution of the human carboxy-terminal sequences into the mouse TERT protein is sufficient to confer immortalization and maintenance of telomere length and function. Strikingly, we find that hTERT protein accumulates to markedly higher levels than does mTERT protein and that the sequences governing this difference in protein regulation also reside in the carboxy-terminal domain. These elevated protein levels, which are characteristic of hTERT, are necessary but not sufficient for telomere maintenance because stabilized mTERT mutants cannot immortalize human cells. Thus, the TERT carboxy terminus contains sequences that regulate TERT protein levels and determinants that are required for productive action on telomere ends.

    View details for DOI 10.1128/MCB.26.6.2146-2159.2006

    View details for Web of Science ID 000235915400012

    View details for PubMedID 16507993

  • Conditional telomerase induction causes proliferation of hair follicle stem cells NATURE Sarin, K. Y., Cheung, P., Gilison, D., Lee, E., Tennen, R. I., Wang, E., Artandi, M. K., Oro, A. E., Artandi, S. E. 2005; 436 (7053): 1048-1052


    TERT, the protein component of telomerase, serves to maintain telomere function through the de novo addition of telomere repeats to chromosome ends, and is reactivated in 90% of human cancers. In normal tissues, TERT is expressed in stem cells and in progenitor cells, but its role in these compartments is not fully understood. Here we show that conditional transgenic induction of TERT in mouse skin epithelium causes a rapid transition from telogen (the resting phase of the hair follicle cycle) to anagen (the active phase), thereby facilitating robust hair growth. TERT overexpression promotes this developmental transition by causing proliferation of quiescent, multipotent stem cells in the hair follicle bulge region. This new function for TERT does not require the telomerase RNA component, which encodes the template for telomere addition, and therefore operates through a mechanism independent of its activity in synthesizing telomere repeats. These data indicate that, in addition to its established role in extending telomeres, TERT can promote proliferation of resting stem cells through a non-canonical pathway.

    View details for DOI 10.1038/nature03836

    View details for Web of Science ID 000231263900057

    View details for PubMedID 16107853