Professional Education
-
Doctor of Philosophy, University of Arkansas Little Rock (2016)
-
Master of Science, St Xavier's Collegiate School (2012)
The spleen is a complex secondary lymphoid organ that plays a crucial role in controlling blood-stage infection with Plasmodium parasites. It is tasked with sensing and removing parasitized RBCs, erythropoiesis, the activation and differentiation of adaptive immune cells, and the development of protective immunity, all in the face of an intense inflammatory environment. This paper describes how these processes are regulated following infection and recognizes the gaps in our current knowledge, highlighting recent insights from human infections and mouse models.
View details for DOI 10.1002/JLB.4RI1020-713R
View details for PubMedID 33464668
View details for Web of Science ID 000589972401412
Pulse-chase analysis is a commonly used technique for studying the synthesis, processing, and transport of proteins. Cultured cells expressing proteins of interest are allowed to take up radioactively labeled amino acids for a brief interval ("pulse"), during which all newly synthesized proteins incorporate the label. The cells are then returned to nonradioactive culture medium for various times ("chase"), during which proteins may undergo conformational changes, trafficking, or degradation. Proteins of interest are isolated (usually by immunoprecipitation) and resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and the fate of radiolabeled molecules is examined by autoradiography. This chapter describes a pulse-chase protocol suitable for studies of major histocompatibility complex (MHC) class II biosynthesis and maturation. We discuss how results are affected by the recognition by certain anti-class II antibodies of distinct class II conformations associated with particular biosynthetic states. Our protocol can be adapted to follow the fate of many other endogenously synthesized proteins, including viral or transfected gene products, in cultured cells.
View details for DOI 10.1007/978-1-4939-9450-2_23
View details for PubMedID 31147950