Professional Education

  • Bachelor of Science, Ruprecht Karl Universitat Heidelberg (2010)
  • Master of Science, Ruprecht Karl Universitat Heidelberg (2012)
  • Doctor of Philosophy, University of Cambridge (2016)

Stanford Advisors


All Publications

  • Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways. Neuron Wu, X., Morishita, W. K., Riley, A. M., Hale, W. D., Sudhof, T. C., Malenka, R. C. 2019


    Neuroligins, postsynaptic cell adhesion molecules that are linked to neuropsychiatric disorders, are extensively studied, but fundamental questions about their functions remain. Using invivo replacement strategies in quadruple conditional knockout mice of all neuroligins to avoid heterodimerization artifacts, we show, in hippocampal CA1 pyramidal neurons, that neuroligin-1 performs two key functions in excitatory synapses by distinct molecular mechanisms. N-methyl-D-aspartate (NMDA) receptor-dependent LTP requires trans-synaptic binding of postsynaptic neuroligin-1 to presynaptic beta-neurexins but not the cytoplasmic sequences of neuroligins. In contrast, postsynaptic NMDA receptor (NMDAR)-mediated responses involve a neurexin-independent mechanism that requires the neuroligin-1 cytoplasmic sequences. Strikingly, deletion of neuroligins blocked the spine expansion associated with LTP, as monitored by two-photon imaging; this block involved a mechanism identical to that of therole of neuroligin-1 in NMDAR-dependent LTP. Our data suggest that neuroligin-1 performs two mechanistically distinct signaling functions and that neurolign-1-mediated trans-synaptic cell adhesion signaling critically regulates LTP.

    View details for PubMedID 30871858

  • Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nature communications Wu, X., Fleming, A., Ricketts, T., Pavel, M., Virgin, H., Menzies, F. M., Rubinsztein, D. C. 2016; 7: 10533


    Autophagy is a conserved, intracellular, lysosomal degradation pathway. While mechanistic aspects of this pathway are increasingly well defined, it remains unclear how autophagy modulation impacts normal physiology. It is, however, becoming clear that autophagy may play a key role in regulating developmental pathways. Here we describe for the first time how autophagy impacts stem cell differentiation by degrading Notch1. We define a novel route whereby this plasma membrane-resident receptor is degraded by autophagy, via uptake into ATG16L1-positive autophagosome-precursor vesicles. We extend our findings using a physiologically relevant mouse model with a hypomorphic mutation in Atg16L1, a crucial autophagy gene, which shows developmental retention of early-stage cells in various tissues where the differentiation of stem cells is retarded and thus reveal how modest changes in autophagy can impact stem cell fate. This may have relevance for diverse disease conditions, like Alzheimer's Disease or Crohn's Disease, associated with altered autophagy.

    View details for DOI 10.1038/ncomms10533

    View details for PubMedID 26837467

    View details for PubMedCentralID PMC4742842

Footer Links:

Stanford Medicine Resources: