Bio

Academic Appointments


Publications

All Publications


  • Intensity modulated Ir-192 brachytherapy using high-Z 3D printed applicators. Physics in medicine and biology Skinner, L. B., Niedermayr, T., Prionas, N., Perl, J., Fahimian, B. P., Kidd, E. 2020

    Abstract

    Gynecologic cancers are often asymmetric, yet current Ir-192 brachytherapy techniques provide only limited radial modulation of the dose. The shielded solutions investigated here solve this by providing the ability to modulate between highly asymmetric and radially symmetric dose distributions at a given location. To find applicator designs that can modulate between full dose and less than 50% dose, at the dimensions of the urethra, a 2D calculation algorithm was developed to narrow down the search space. Two shielding design types were then further investigated using Monte Carlo and Boltzmann-solver dose calculation algorithms. 3D printing techniques using ISO10993 certified biocompatible plastics and 3D printable tungsten-loaded plastics were tested. It was also found that shadowing effects set by the shape of the shielding cannot be easily modulated out, hence careful design is required. The shielded applicator designs investigated here, allow for reduction of the dose by over 50% at 5 mm from the applicator surface in desired regions, while also allowing radially symmetric dose with isodose line (IDL) deviations less than 0.5 mm from circular. The shielding designs were also chosen with treatment delivery time in mind. Treatment times for these shielded designs were found to be less than 1.4 times longer than a six-channel unshielded cylinder for the equivalent fully symmetric dose distribution. The 2D calculation methods developed here provide a simple way to rapidly evaluate shielding designs, while the 3D printing techniques also allow for devices with novel shapes to be rapidly prototyped. Both TOPAS Monte Carlo and Acuros BV calculations show that significant dose shaping, and organ at risk (OAR) sparing can be achieved without significantly compromising the plan in regions that require the full dose.

    View details for DOI 10.1088/1361-6560/ab9b54

    View details for PubMedID 32521512

  • Factor 10 Expedience of Monthly Linac Quality Assurance via an Ion Chamber Array and Automation Scripts. Technology in cancer research & treatment Skinner, L. B., Yang, Y., Hsu, A., Xing, L., Yu, A. S., Niedermayr, T. 2019; 18: 1533033819876897

    Abstract

    PURPOSE: While critical for safe and accurate radiotherapy, monthly quality assurance of medical linear accelerators is time-consuming and takes physics resources away from other valuable tasks. The previous methods at our institution required 5 hours to perform the mechanical and dosimetric monthly linear accelerator quality assurance tests. An improved workflow was developed to perform these tests with higher accuracy, with fewer error pathways, in significantly less time.METHODS: A commercial ion chamber array (IC profiler, Sun Nuclear, Melbourne, Florida) is combined with automation scripts to consolidate monthly linear accelerator QA. The array was used to measure output, flatness, symmetry, jaw positions, gated dose constancy, energy constancy, collimator walkout, crosshair centering, and dosimetric leaf gap constancy. Treatment plans were combined with automation scripts that interface with Sun Nuclear's graphical user interface. This workflow was implemented on a standard Varian clinac, with no special adaptations, and can be easily applied to other C-arm linear accelerators.RESULTS: These methods enable, in 30 minutes, measurement and analysis of 20 of the 26 dosimetric and mechanical monthly tests recommended by TG-142. This method also reduces uncertainties in the measured beam profile constancy, beam energy constancy, field size, and jaw position tests, compared to our previous methods. One drawback is the increased uncertainty associated with output constancy. Output differences between IC profiler and farmer chamber in plastic water measurements over a 6-month period, across 4 machines, were found to have a 0.3% standard deviation for photons and a 0.5% standard deviation for electrons, which is sufficient for verifying output accuracy according to TG-142 guidelines. To minimize error pathways, automation scripts which apply the required settings, as well as check the exported data file integrity were employed.CONCLUSIONS: The equipment, procedure, and scripts used here reduce the time burden of routine quality assurance tests and in most instances improve precision over our previous methods.

    View details for DOI 10.1177/1533033819876897

    View details for PubMedID 31707931

  • Optimizing efficiency and safety in external beam radiotherapy using automated plan check (APC) tool and six sigma methodology. Journal of applied clinical medical physics Liu, S., Bush, K. K., Bertini, J., Fu, Y., Lewis, J. M., Pham, D. J., Yang, Y., Niedermayr, T. R., Skinner, L., Xing, L., Beadle, B. M., Hsu, A., Kovalchuk, N. 2019; 20 (8): 56?64

    Abstract

    To develop and implement an automated plan check (APC) tool using a Six Sigma methodology with the aim of improving safety and efficiency in external beam radiotherapy.The Six Sigma define-measure-analyze-improve-control (DMAIC) framework was used by measuring defects stemming from treatment planning that were reported to the departmental incidence learning system (ILS). The common error pathways observed in the reported data were combined with our departmental physics plan check list, and AAPM TG-275 identified items. Prioritized by risk priority number (RPN) and severity values, the check items were added to the APC tool developed using Varian Eclipse Scripting Application Programming Interface (ESAPI). At 9 months post-APC implementation, the tool encompassed 89 check items, and its effectiveness was evaluated by comparing RPN values and rates of reported errors. To test the efficiency gains, physics plan check time and reported error rate were prospectively compared for 20 treatment plans.The APC tool was successfully implemented for external beam plan checking. FMEA RPN ranking re-evaluation at 9 months post-APC demonstrated a statistically significant average decrease in RPN values from 129.2 to 83.7 (P < .05). After the introduction of APC, the average frequency of reported treatment-planning errors was reduced from 16.1% to 4.1%. For high-severity errors, the reduction was 82.7% for prescription/plan mismatches and 84.4% for incorrect shift note. The process shifted from 4? to 5? quality for isocenter-shift errors. The efficiency study showed a statistically significant decrease in plan check time (10.1 ± 7.3 min, P = .005) and decrease in errors propagating to physics plan check (80%).Incorporation of APC tool has significantly reduced the error rate. The DMAIC framework can provide an iterative and robust workflow to improve the efficiency and quality of treatment planning procedure enabling a safer radiotherapy process.

    View details for DOI 10.1002/acm2.12678

    View details for PubMedID 31423729

  • A multichannel superconducting tunnel junction detector for high-resolution X-ray spectroscopy of magnesium diboride films Applied Superconductivity Conference Friedrich, S., Vailionis, A., Drury, O., Niedermayr, T., Funk, T., Kang, W. N., Choi, E. M., Kim, H. J., Lee, S. I., Cramer, S. P., Kim, C., Labov, S. E. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. 2003: 1114?19

Footer Links:

Stanford Medicine Resources: