Professional Education
-
Doctor of Philosophy, University of Florida (2016)
-
Bachelor of Science, Washington and Lee University (2007)
Reliance on rodents for understanding pancreatic genetics, development and islet function could limit progress in developing interventions for human diseases like diabetes mellitus. Similarities of pancreas morphology and function suggest that porcine and human pancreas developmental biology may have useful homologies. However, little is known about pig pancreas development. To fill this knowledge gap, we investigated fetal and neonatal pig pancreas at multiple, crucial developmental stages using modern experimental approaches. Purification of islet ?-, ?- and ?-cells followed by transcriptome analysis (RNA-Seq) and immunohistology identified cell- and stage-specific regulation, and revealed that pig and human islet cells share characteristic features not observed in mice. Morphometric analysis also revealed endocrine cell allocation and architectural similarities between pig and human islets. Our analysis unveiled scores of signaling pathways linked to native islet ?-cell functional maturation, including evidence of fetal ?-cell GLP-1 production and signaling to ?-cells. Thus, the findings and resources detailed here show how pig pancreatic islet studies complement other systems for understanding the developmental programs that generate functional islet cells, and that are relevant to human pancreatic diseases.
View details for DOI 10.1242/dev.186213
View details for PubMedID 32108026
Latest information on COVID-19
Stanford Medicine is closely monitoring the outbreak of novel coronavirus (COVID-19). A new page is dedicated to the latest information and developments about COVID-19.
Racism and discrimination are direct affronts to Stanford Medicine?s values. Read our leaders? pledge on racial equity.
A leader in the biomedical revolution, Stanford Medicine has a long tradition of leadership in pioneering research, creative teaching protocols and effective clinical therapies.
An at-home COVID-19 test, designed by Stanford researchers to be easy to use and provide results within 30 minutes, will be the focus of a study funded by the Stanford Medicine Catalyst Program.
Our scientists have launched dozens of research projects as part of the global response to COVID-19. Some aim to prevent, diagnose and treat the disease; others aim to understand how it spreads and how people?s immune systems respond to it.
Latest information on COVID-19
Stanford Medicine is closely monitoring the outbreak of novel coronavirus (COVID-19). A new page is dedicated to the latest information and developments about COVID-19.
Racism and discrimination are direct affronts to Stanford Medicine?s values. Read our leaders? pledge on racial equity.
A leader in the biomedical revolution, Stanford Medicine has a long tradition of leadership in pioneering research, creative teaching protocols and effective clinical therapies.
An at-home COVID-19 test, designed by Stanford researchers to be easy to use and provide results within 30 minutes, will be the focus of a study funded by the Stanford Medicine Catalyst Program.
Our scientists have launched dozens of research projects as part of the global response to COVID-19. Some aim to prevent, diagnose and treat the disease; others aim to understand how it spreads and how people?s immune systems respond to it.