Bio

Professional Education


  • Doctor of Philosophy, University of Texas at Dallas (2019)
  • Master of Science, University of Texas at Dallas (2013)
  • Bachelor of Engineering, Maharshi Dayanand University (2010)

Publications

All Publications


  • Disrupted hippocampal growth hormone secretagogue receptor 1? interaction with dopamine receptor D1 plays a role in Alzheimer's disease. Science translational medicine Tian, J., Guo, L., Sui, S., Driskill, C., Phensy, A., Wang, Q., Gauba, E., Zigman, J. M., Swerdlow, R. H., Kroener, S., Du, H. 2019; 11 (505)

    Abstract

    Hippocampal lesions are a defining pathology of Alzheimer's disease (AD). However, the molecular mechanisms that underlie hippocampal synaptic injury in AD have not been fully elucidated. Current therapeutic efforts for AD treatment are not effective in correcting hippocampal synaptic deficits. Growth hormone secretagogue receptor 1? (GHSR1?) is critical for hippocampal synaptic physiology. Here, we report that GHSR1? interaction with ?-amyloid (A?) suppresses GHSR1? activation, leading to compromised GHSR1? regulation of dopamine receptor D1 (DRD1) in the hippocampus from patients with AD. The simultaneous application of the selective GHSR1? agonist MK0677 with the selective DRD1 agonist SKF81297 rescued Ghsr1? function from A? inhibition, mitigating hippocampal synaptic injury and improving spatial memory in an AD mouse model. Our data reveal a mechanism of hippocampal vulnerability in AD and suggest that a combined activation of GHSR1? and DRD1 may be a promising approach for treating AD.

    View details for DOI 10.1126/scitranslmed.aav6278

    View details for PubMedID 31413143

    View details for PubMedCentralID PMC6776822

  • Cyclophilin D deficiency attenuates mitochondrial F1Fo ATP synthase dysfunction via OSCP in Alzheimer's disease. Neurobiology of disease Gauba, E., Chen, H., Guo, L., Du, H. 2019; 121: 138?47

    Abstract

    Mitochondrial dysfunction is pivotal in inducing synaptic injury and neuronal stress in Alzheimer's disease (AD). Mitochondrial F1Fo ATP synthase deregulation is a hallmark mitochondrial defect leading to oxidative phosphorylation (OXPHOS) failure in this neurological disorder. Oligomycin sensitivity conferring protein (OSCP) is a crucial F1Fo ATP synthase subunit. Decreased OSCP levels and OSCP interaction with amyloid ? (A?) constitute key aspects of F1Fo ATP synthase pathology in AD-related conditions. However, the detailed mechanisms promoting such AD-related OSCP changes have not been fully resolved. Here, we have found increased physical interaction of OSCP with Cyclophilin D (CypD) in AD cases as well as in an AD animal model (5xFAD mice). Genetic depletion of CypD mitigates OSCP loss via ubiquitin-dependent OSCP degradation in 5xFAD mice. Moreover, the ablation of CypD also attenuates OSCP/A? interaction in AD mice. The relieved OSCP changes by CypD depletion in 5xFAD mice are along with preserved F1Fo ATP synthase function, restored mitochondrial bioenergetics as well as improved mouse cognition. The simplest interpretation of our results is that CypD is a critical mediator that promotes OSCP deficits in AD-related conditions. Therefore, to block the deleterious impact of CypD on OSCP has the potential to be a promising therapeutic strategy to correct mitochondrial dysfunction for AD therapy.

    View details for DOI 10.1016/j.nbd.2018.09.020

    View details for PubMedID 30266287

    View details for PubMedCentralID PMC6250052

  • Cyclophilin D regulates neuronal activity-induced filopodiagenesis by fine-tuning dendritic mitochondrial calcium dynamics. Journal of neurochemistry Sui, S., Tian, J., Gauba, E., Wang, Q., Guo, L., Du, H. 2018; 146 (4): 403?15

    Abstract

    Recent studies have highlighted the role of mitochondria in dendritic protrusion growth and plasticity. However, the detailed mechanisms that mitochondria regulate dendritic filopodia morphogenesis remain elusive. Cyclophilin D (CypD, gene name: Ppif) controls the opening of mitochondrial permeability transition pore. Although the pathological relevance of CypD has been intensively investigated, little is known about its physiological function in neurons. Here, we have found that genetic depletion of or pharmaceutical inhibition of CypD blunts the outgrowth of dendritic filopodia in response to KCl-stimulated neuronal depolarization. Further cell biological studies suggest that such inhibitory effect of CypD loss-of-function is closely associated with compromised flexibility of dendritic mitochondrial calcium regulation during neuronal depolarization, as well as the resultant changes in intradendritic calcium homeostasis, calcium signaling activation, dendritic mitochondrial motility and redistribution. Interestingly, loss of CypD attenuates oxidative stress-induced mitochondrial calcium perturbations and dendritic protrusion injury. Therefore, our study has revealed the physiological function of CypD in dendritic plasticity by acting as a fine-tuner of mitochondrial calcium homeostasis. Moreover, CypD plays distinct roles in neuronal physiology and pathology. Cover Image for this issue: doi: 10.1111/jnc.14189.

    View details for DOI 10.1111/jnc.14484

    View details for PubMedID 29900530

    View details for PubMedCentralID PMC6107423

  • Cyclophilin D Promotes Brain Mitochondrial F1FO ATP Synthase Dysfunction in Aging Mice. Journal of Alzheimer's disease : JAD Gauba, E., Guo, L., Du, H. 2017; 55 (4): 1351?62

    Abstract

    Brain aging is the known strongest risk factor for Alzheimer's disease (AD). In recent years, mitochondrial deficits have been proposed to be a common mechanism linking brain aging to AD. Therefore, to elucidate the causative mechanisms of mitochondrial dysfunction in aging brains is of paramount importance for our understanding of the pathogenesis of AD, in particular its sporadic form. Cyclophilin D (CypD) is a specific mitochondrial protein. Recent studies have shown that F1FO ATP synthase oligomycin sensitivity conferring protein (OSCP) is a binding partner of CypD. The interaction of CypD with OSCP modulates F1FO ATP synthase function and mediates mitochondrial permeability transition pore (mPTP) opening. Here, we have found that increased CypD expression, enhanced CypD/OSCP interaction, and selective loss of OSCP are prominent brain mitochondrial changes in aging mice. Along with these changes, brain mitochondria from the aging mice demonstrated decreased F1FO ATP synthase activity and defective F1FO complex coupling. In contrast, CypD deficient mice exhibited substantially mitigated brain mitochondrial F1FO ATP synthase dysfunction with relatively preserved mitochondrial function during aging. Interestingly, the aging-related OSCP loss was also dramatically attenuated by CypD depletion. Therefore, the simplest interpretation of this study is that CypD promotes F1FO ATP synthase dysfunction and the resultant mitochondrial deficits in aging brains. In addition, in view of CypD and F1FO ATP synthase alterations seen in AD brains, the results further suggest that CypD-mediated F1FO ATP synthase deregulation is a shared mechanism linking mitochondrial deficits in brain aging and AD.

    View details for DOI 10.3233/JAD-160822

    View details for PubMedID 27834780

    View details for PubMedCentralID PMC5496683

  • Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nature communications Beck, S. J., Guo, L., Phensy, A., Tian, J., Wang, L., Tandon, N., Gauba, E., Lu, L., Pascual, J. M., Kroener, S., Du, H. 2016; 7: 11483

    Abstract

    F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer's disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective loss of the oligomycin sensitivity conferring protein (OSCP) subunit of the F1FO-ATP synthase and the physical interaction of OSCP with amyloid beta (A?) in the brains of AD individuals and in an AD mouse model. Changes in OSCP levels are more pronounced in neuronal mitochondria. OSCP loss and its interplay with A? disrupt F1FO-ATP synthase, leading to reduced ATP production, elevated oxidative stress and activated mPT. The restoration of OSCP ameliorates A?-mediated mouse and human neuronal mitochondrial impairments and the resultant synaptic injury. Therefore, mitochondrial F1FO-ATP synthase dysfunction associated with AD progression could potentially be prevented by OSCP stabilization.

    View details for DOI 10.1038/ncomms11483

    View details for PubMedID 27151236

    View details for PubMedCentralID PMC5494197

  • Transient Cerebral Ischemia Promotes Brain Mitochondrial Dysfunction and Exacerbates Cognitive Impairments in Young 5xFAD Mice. PloS one Lu, L., Guo, L., Gauba, E., Tian, J., Wang, L., Tandon, N., Shankar, M., Beck, S. J., Du, Y., Du, H. 2015; 10 (12): e0144068

    Abstract

    Alzheimer's disease (AD) is heterogeneous and multifactorial neurological disorder; and the risk factors of AD still remain elusive. Recent studies have highlighted the role of vascular factors in promoting the progression of AD and have suggested that ischemic events increase the incidence of AD. However, the detailed mechanisms linking ischemic insult to the progression of AD is still largely undetermined. In this study, we have established a transient cerebral ischemia model on young 5xFAD mice and their non-transgenic (nonTg) littermates by the transient occlusion of bilateral common carotid arteries. We have found that transient cerebral ischemia significantly exacerbates brain mitochondrial dysfunction including mitochondrial respiration deficits, oxidative stress as well as suppressed levels of mitochondrial fusion proteins including optic atrophy 1 (OPA1) and mitofusin 2 (MFN2) in young 5xFAD mice resulting in aggravated spatial learning and memory. Intriguingly, transient cerebral ischemia did not induce elevation in the levels of cortical or mitochondrial Amyloid beta (A?)1-40 or 1-42 levels in 5xFAD mice. In addition, the glucose- and oxygen-deprivation-induced apoptotic neuronal death in A?-treated neurons was significantly mitigated by mitochondria-targeted antioxidant mitotempo which suppresses mitochondrial superoxide levels. Therefore, the simplest interpretation of our results is that young 5xFAD mice with pre-existing AD-like mitochondrial dysfunction are more susceptible to the effects of transient cerebral ischemia; and ischemic events may exacerbate dementia and worsen the outcome of AD patients by exacerbating mitochondrial dysfunction.

    View details for DOI 10.1371/journal.pone.0144068

    View details for PubMedID 26632816

    View details for PubMedCentralID PMC4669173

Footer Links:

Stanford Medicine Resources: