School of Medicine
Showing 1-100 of 301 Results
-
Monther Abu-Remaileh
Assistant Professor of Chemical Engineering and, by courtesy, of Genetics
Bio The Abu-Remaileh Lab is interested in identifying novel pathways that enable cellular and organismal adaptation to metabolic stress and changes in environmental conditions. We also study how these pathways go awry in human diseases such as cancer, neurodegeneration and metabolic syndrome, in order to engineer new therapeutic modalities.
To address these questions, our lab uses a multidisciplinary approach to study the biochemical functions of the lysosome in vitro and in vivo. Lysosomes are membrane-bound compartments that degrade macromolecules and clear damaged organelles to enable cellular adaptation to various metabolic states. Lysosomal function is critical for organismal homeostasis?mutations in genes encoding lysosomal proteins cause severe human disorders known as lysosomal storage diseases, and lysosome dysfunction is implicated in age-associated diseases including cancer, neurodegeneration and metabolic syndrome.
By developing novel tools and harnessing the power of metabolomics, proteomics and functional genomics, our lab will define 1) how the lysosome communicates with other cellular compartments to fulfill the metabolic demands of the cell under various metabolic states, 2) and how its dysfunction leads to rare and common human diseases. Using insights from our research, we will engineer novel therapies to modulate the pathways that govern human disease. -
Russ B. Altman
Kenneth Fong Professor and Professor of Bioengineering, of Genetics, of Medicine (General Medical Discipline), of Biomedical Data Science and, by courtesy, of Computer Science
Current Research and Scholarly Interests I refer you to my web page for detailed list of interests, projects and publications. In addition to pressing the link here, you can search "Russ Altman" on http://www.google.com/
-
Euan A. Ashley
Associate Dean, School of Medicine, Professor of Medicine (Cardiovascular), of Genetics, of Biomedical Data Science and, by courtesy, of Pathology at the Stanford University Medical Center
Current Research and Scholarly Interests The Ashley lab is focused on precision medicine. We develop methods for the interpretation of whole genome sequencing data to improve the diagnosis of genetic disease and to personalize the practice of medicine. At the wet bench, we take advantage of cell systems, transgenic models and microsurgical models of disease to prove causality in biological pathways and find targets for therapeutic development.
-
Laura Attardi
Professor of Radiation Oncology (Radiation and Cancer Biology) and of Genetics
Current Research and Scholarly Interests Our research is aimed at defining the pathways of p53-mediated apoptosis and tumor suppression, using a combination of biochemical, cell biological, and mouse genetic approaches. Our strategy is to start by generating hypotheses about p53 mechanisms of action using primary mouse embryo fibroblasts (MEFs), and then to test them using gene targeting technology in the mouse.
-
Amir Bahmani
Lecturer, Genetics
Bio Amir Bahmani is the Director of Science and Technology at Stanford Healthcare Innovation Lab (SHIL), the Research and Development Lead at Stanford Center for Genomics and Personalized Medicine (SCGPM) and a lecturer at Stanford University. He has been working on distributed and parallel computing applications since 2008. Currently, Amir is an active researcher in the VA Million Veteran Program (MVP), Human Tumor Atlas Network (HTAN), the Human BioMolecular Atlas Program (HuBMAP), Stanford Metabolic Health Center (MHC) and Integrated Personal Omics Profiling (iPOP).
-
Julie Baker
Professor of Genetics
Current Research and Scholarly Interests We examine how cells communicate and function during fetal development. The work in my laboratory focuses on the establishment of specific cell fates using genomics to decipher interactions between chromatin and developmental signaling cascades, between genomes and rapidly evolving cell types, and between genomic copy number variation and gene expression. In recent years we have focused on the vastly understudied biology of the trophoblast lineage, particularly how this lineage evolved.
-
Maria Barna
Associate Professor of Genetics
Current Research and Scholarly Interests Our lab studies how intricate control of gene expression and cell signaling is regulated on a minute-by-minute basis to give rise to the remarkable diversity of cell types and tissue morphology that form the living blueprints of developing organisms. Work in the Barna lab is presently split into two main research efforts. The first is investigating ribosome-mediated control of gene expression genome-wide in space and time during cellular differentiation and organismal development. This research is opening a new field of study in which we apply sophisticated mass spectrometry, computational biology, genomics, and developmental genetics, to characterize a ribosome code to gene expression. Our research has shown that not all of the millions of ribosomes within a cell are the same and that ribosome heterogeneity can diversify how genomes are translated into proteomes. In particular, we seek to address whether fundamental aspects of gene regulation are controlled by ribosomes harboring a unique activity or composition that are tuned to translating specific transcripts by virtue of RNA regulatory elements embedded within their 5?UTRs. The second research effort is centered on employing state-of-the-art live cell imaging to visualize cell signaling and cellular control of organogenesis. This research has led to the realization of a novel means of cell-cell communication dependent on a dense network of actin-based cellular extension within developing organs that interconnect and facilitate the precise transmission of molecular information between cells. We apply and create bioengineering tools to manipulate such cellular interactions and signaling in-vivo.
-
Greg Barsh
Professor of Genetics and of Pediatrics, Emeritus
Current Research and Scholarly Interests Genetics of color variation
-
Michael Bassik
Associate Professor of Genetics
Current Research and Scholarly Interests My laboratory is focused on (1) the development of new technologies for high-throughput functional genomics using the CRISPR/Cas9 system, and (2) application of these tools to study the cellular response to drugs and endocytic pathogens (such as bacteria, viruses, and protein toxins). Fascinating in themselves, these pathogens also help illuminate basic cell biology. A complementary interest is in the identification of new drug targets and combinations to combat cancer and neurodegeneration.
-
Jon Bernstein
Professor of Pediatrics (Genetics) at the Lucile Salter Packard Children's Hospital and, by courtesy, of Genetics
Current Research and Scholarly Interests My research is focused on the diagnosis, discovery and delineation of rare genetic conditions with a focus of neurodevelopmental disorders. This work includes the application of novel computational methods and multi-omics profiling (whole genome sequencing, RNA sequencing, metabolomics). I additionally participate in an interdisciplinary project to develop induced pluripotent stem cell (iPSC) models of genetic neurodevelopmental disorders..
-
Ami Bhatt
Assistant Professor of Medicine (Hematology) and of Genetics
Current Research and Scholarly Interests The Bhatt lab is exploring how the microbiota is intertwined with states of health and disease. We apply the most modern genetic tools in an effort to deconvolute the mechanism of human diseases.
-
Andrew Brooks
Postdoctoral Research Fellow, Genetics
Bio Postdoctoral researcher in the Snyder Lab. My research focuses on the human gut microbiome, and I am involved in multiple multiomic projects investigating how physiological systems through the human body interact across different lifestyles and health states. I perform both wet and dry lab aspects of multiomics analyses, and am involved in two coronavirus research projects including handling of positive SARS-COV-2 samples.
-
Anne Brunet
Michele and Timothy Barakett Endowed Professor
Current Research and Scholarly Interests Our lab studies the molecular basis of longevity. We are interested in the mechanism of action of known longevity genes, including FOXO and SIRT, in the mammalian nervous system. We are particularly interested in the role of these longevity genes in neural stem cells. We are also discovering novel genes and processes involved in aging using two short-lived model systems, the invertebrate C. elegans and an extremely short-lived vertebrate, the African killifish N. furzeri.
-
Michele Calos
Professor of Genetics, Emerita
Current Research and Scholarly Interests My lab is developing innovative gene and stem cell therapies for genetic diseases, with a focus on gene therapy and regenerative medicine.
We have created novel methods for inserting therapeutic genes into the chromosomes at specific places by using homologous recombination and recombinase enzymes.
We are working on 3 forms of muscular dystrophy.
We created induced pluripotent stem cells from patient fibroblasts, added therapeutic genes, differentiated, and engrafted the cells. -
MaryAnn Campion
Clinical Associate Professor, Genetics
Current Research and Scholarly Interests My research has focused on faculty development in academic medicine and the translation of genomics into public health.
-
Howard Y. Chang, MD, PhD
Virginia and D. K. Ludwig Professor of Cancer Research and Professor of Genetics
Current Research and Scholarly Interests Our research is focused on how the activities of hundreds or even thousands of genes (gene parties) are coordinated to achieve biological meaning. We have pioneered methods to predict, dissect, and control large-scale gene regulatory programs; these methods have provided insights into human development, cancer, and aging.
-
Mike Cherry
Professor (Research) of Genetics
Current Research and Scholarly Interests My research involves identifying, validating and integrating scientific facts into encyclopedic databases essential for research and scientific education. Published results of scientific experimentation are a foundation of our understanding of the natural world and provide motivation for new experiments. The combination of in-depth understanding reported in the literature with computational analyses is an essential ingredient of modern biological research.
-
Stanley N. Cohen, MD
Kwoh-Ting Li Professor in the School of Medicine, Professor of Genetics and of Medicine
Current Research and Scholarly Interests We study mechanisms that affect the expression and decay of normal and abnormal mRNAs, and also RNA-related mechanisms that regulate microbial antibiotic resistance. A small bioinformatics team within our lab has developed knowledge based systems to aid in investigations of genes.
-
Le Cong
Assistant Professor of Pathology (Pathology Research) and of Genetics
Bio Dr. Cong is leading a group in the Department of Pathology and Genetics at Stanford School of Medicine to pursue novel technology for scalable genome editing and single-cell genomics, and accompanying computational approaches inspired by data science. His group has a focus on studying immunology in the context of neuroscience, immunology, and infectious diseases.
He earned his Ph.D. from Harvard Medical School co-advised by Drs. Feng Zhang and George Church. He completed doctoral work primarily in Dr. Feng Zhang?s laboratory, where he published seminal studies on harnessing CRISPR/Cas9 for gene editing, including the most highly-cited paper in CRISPR field, with cumulative citation over 20,000 times. He has obtained over 20 issued patents as co-inventor, and his work led to one of the first FDA-approved clinical trials employing viral delivery of CRISPR/Cas9 for in vivo gene therapy. His later work applied single-cell RNA-seq to cancer drug discovery under Dr. Aviv Regev at the Broad Institute with Drs. Tyler Jacks and Vijay Kuchroo. He also made contribution to understanding structure and function of viral proteins from coronavirus focusing on SARS-CoV.
Dr. Cong is an awardee of the National Institute of Health NHGRI Genomic Innovator Award and Baxter Foundation Faculty Scholar. He was a Howard Hughes Medical Institute (HHMI) International Fellow, a Cancer Research Institute (CRI) Irvington Fellow, and was selected as Forbes 30 Under 30 Asia list of young innovators, MIT TechReview TR35 China, and 2019 ?Top 10 under 40? by GEN (Genetic Engineering & Biotechnology News). -
Christina Curtis
Associate Professor of Medicine (Oncology) and of Genetics
Current Research and Scholarly Interests The Curtis laboratory is focused on the development and application of innovative experimental, computational, and analytical approaches to improve the diagnosis, treatment, and early detection of cancer.
-
Ronald W. Davis
Professor of Biochemistry and of Genetics
Current Research and Scholarly Interests We are using Saccharomyces cerevisiae and Human to conduct whole genome analysis projects. The yeast genome sequence has approximately 6,000 genes. We have made a set of haploid and diploid strains (21,000) containing a complete deletion of each gene. In order to facilitate whole genome analysis each deletion is molecularly tagged with a unique 20-mer DNA sequence. This sequence acts as a molecular bar code and makes it easy to identify the presence of each deletion.
-
Ning Deng
Senior Research Scientist, Genetics
Current Role at Stanford Senior Research Scientist
Lab Manager -
Barbara L Dunn
Affiliate, Genetics
Bio I'm a Senior Biocuration Scientist in the Department of Genetics at Stanford University, currently working with the Saccharomyces Genome Database in the laboratory of Dr. J. Michael Cherry. I received my A.B. in Botany at UC Berkeley, and my Ph.D. in Biological Chemistry at Harvard University, where I studied yeast telomeres in the laboratory of Dr. Jack Szostak. My recent bench research has focused on using whole-genome DNA and RNA sequencing, ChIP-Seq, array-CGH, and other ?omics? methods to broadly explore evolution in yeast, and particularly the genome structures and genome evolution of industrial yeasts (lager, ale, wine, ethanol, bread).
-
Graham Erwin
Postdoctoral Research Fellow, Genetics
Bio Graham Erwin, Ph.D., is a Stanford Cancer Institute Postdoctoral Fellow in the Department of Genetics at Stanford University. He is a molecular, chemical, and genome biologist elucidating the functional role of repetitive DNA sequences. This work is guiding the design of new therapeutics and diagnostics for human disease. Graham is currently supported by an NIH Pathway to Independence Award (K99/R00). He received his Ph.D. from the University of Wisconsin?Madison, where he was a co-inventor of synthetic transcription factors to treat devastating neurodegenerative diseases. The resulting patents formed the basis of Design Therapeutics (San Diego, California). He has published first-author papers in high-impact journals including PNAS and Science. Graham is an advocate for first-generation college students and for programs that support mental health and psychological thriving on college campuses.
-
Yanan Feng
Sr. Research Scientist - Basic Life, Genetics
Current Role at Stanford Senior Research Scientist, Department of Genetics, Dr. Stanley N. Cohen's lab
-
Andrew Fire
George D. Smith Professor in Molecular and Genetic Medicine and Professor of Pathology and of Genetics
Current Research and Scholarly Interests We study natural cellular mechanisms for adapting to genetic change. These include systems activated during normal development and those for detecting and responding to foreign or unwanted genetic activity. Underlying these studies are questions of how a cells can distinguish information as "self" versus "nonself" or "wanted" versus "unwanted".
-
James Ford
Professor of Medicine (Oncology) and of Genetics and, by courtesy, of Pediatrics
Current Research and Scholarly Interests Mammalian DNA repair and DNA damage inducible responses; p53 tumor suppressor gene; transcription in nucleotide excision repair and mutagenesis; genetic determinants of cancer cell sensitivity to DNAdamage; genetics of inherited cancer susceptibility syndromes and human GI malignancies; clinical cancer genetics of BRCA1 and BRCA2 breast cancer and mismatch repair deficient colon cancer.
-
Polly Fordyce
Assistant Professor of Bioengineering and of Genetics
Current Research and Scholarly Interests The Fordyce Lab is focused on developing new instrumentation and assays for making quantitative, systems-scale biophysical measurements of molecular interactions. Current research in the lab is focused on three main platforms: (1) arrays of valved reaction chambers for high-throughput protein expression and characterization, (2) spectrally encoded beads for multiplexed bioassays, and (3) sortable droplets and microwells for single-cell assays.
-
Uta Francke
Professor of Genetics and of Pediatrics, Emerita
Current Research and Scholarly Interests Functional consequences and pathogenetic mechanisms of mutations and microdeletions in human neurogenetic syndromes and mouse models. Integration of genomic information into medical care.
-
Judith Frydman
Donald Kennedy Chair in the School of Humanities and Sciences and Professor of Genetics
Current Research and Scholarly Interests The long term goal of our research is to understand how proteins fold in living cells. My lab uses a multidisciplinary approach to address fundamental questions about molecular chaperones, protein folding and degradation. In addition to basic mechanistic principles, we aim to define how impairment of cellular folding and quality control are linked to disease, including cancer and neurodegenerative diseases and examine whether reengineering chaperone networks can provide therapeutic strategies.
-
Margaret T. Fuller
Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)
Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.
-
Ariel Bacaner Ganz
Postdoctoral Research Fellow, Genetics
Bio Ariel B. Ganz, PhD is a postdoctoral fellow at Stanford University in the Snyder Lab, Department of Genetics in the School of Medicine researching effective strategies for happiness and well-being, and how psychological changes can alter health on a molecular level. She holds a doctoral degree in Molecular Nutrition from Cornell University and has published across diverse research fields from precision medicine and nutrition to computational chemistry and theoretical physics.
-
Aaron D. Gitler
The Stanford Medicine Basic Science Professor
Current Research and Scholarly Interests We investigate the mechanisms of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, and ALS. We don't limit ourselves to one model system or experimental approach. We start with yeast, perform genetic and chemical screens, and then move to other model systems (e.g. mammalian tissue culture, mouse, fly) and even work with human patient samples (tissue sections, patient-derived cells, including iPS cells) and next generation sequencing approaches.
-
Anna L Gloyn
Professor of Pediatrics (Endocrinology) and, by courtesy, of Genetics
Current Research and Scholarly Interests Anna's current research projects are focused on the translation of genetic association signals for type 2 diabetes and glycaemic traits into cellular and molecular mechanisms for beta-cell dysfunction and diabetes. Her group uses a variety of complementary approaches, including human genetics, functional genomics, physiology and islet-biology to dissect out the molecular mechanisms driving disease pathogenesis.