School of Medicine


Showing 321-330 of 338 Results

  • Michael Fujinaka

    Michael Fujinaka

    Clinical Instructor, Anesthesiology, Perioperative and Pain Medicine

    Bio Dr. Fujinaka studied Economics and Molecular Biology at Claremont McKenna College. He received his Medical Doctorate (M.D.) from the University of California, San Diego. Dr. Fujinaka completed his Internal Medicine Internship at the University of Hawaii in Honolulu. He then Specialized in Anesthesiology at the University of California, San Diego. Finally, he completed Sub-Specialty training in Pain Medicine at Stanford University. While at Stanford, the Faculty selected him to be Chief of his Fellowship class. He joined as full-time Faculty with Stanford Division of Pain Medicine, Department of Anesthesiology in 2016.

  • Eri Fukaya

    Eri Fukaya

    Clinical Assistant Professor, Surgery - Vascular Surgery

    Bio Dr. Fukaya practices Vascular Medicine at the Stanford Vascular Clinics and Advanced Wound Care Center. She received her medical education in Tokyo and completed her medical training both in the US and Japan. She joined Stanford in 2015.

    Vascular Medicine covers a wide range of vascular disorders including chronic venous insufficiency, varicose veins, deep vein thrombosis, post thrombotic syndrome, peripheral artery disease, carotid artery disease, cardiovascular risk evaluation, rare vascular disease, lymphedema, arterial/venous/diabetic ulcers, and wound care.

    Dr. Fukaya has a special interest in venous disease and started the Stanford Vascular and Vein Clinic in 2016.

    Board Certified in Vascular Medicine
    Board Certified in Internal Medicine
    Board Certified in Internal Medicine (Japan)
    Board Certified in Plastic and Reconstructive Surgery (Japan)

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones II Professor in the School of Engineering

    Bio The processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)

    Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

Footer Links:

Stanford Medicine Resources: