School of Medicine


Showing 21-27 of 27 Results

  • Richard Frock

    Richard Frock

    Assistant Professor of Radiation Oncology (Radiation and Cancer Biology)

    Current Research and Scholarly Interests Mechanisms of DNA double-strand break repair and chromosomal translocations

  • Adam Frymoyer

    Adam Frymoyer

    Clinical Associate Professor, Pediatrics - Neonatal and Developmental Medicine

    Current Research and Scholarly Interests My research interests focus on understanding the clinical pharmacokinetics (PK) and pharmacodynamics (PD) of medicines used in complex pediatric populations. This includes identifying sources of variation in drug response through the application of population PK-PD modeling and simulation approaches. The goal is to ultimately apply this quantitative understanding to guide therapeutic decision-making in infants and children.

  • Janene Fuerch

    Janene Fuerch

    Clinical Assistant Professor, Pediatrics - Neonatal and Developmental Medicine

    Bio Clinical Assistant Professor of Pediatrics; Division of Neonatal and Developmental Medicine.

    Experienced Pediatrician/Neonatologist with training as a Stanford Biodesign Innovation Fellow interested in promoting medtech innovation in neonatology, pediatrics and women's health. Research interests also include: neonatal resuscitation, simulation, human factors, information data displays.

    Stanford Assistant Director, UCSF-Stanford Pediatric Device Consortium
    Assistant Director, Stanford Byer's Center for Biodesign Faculty Fellowship
    Co-Instructor, Stanford Biodesign Innovation Graduate Course
    Associate Director, Neonatal Resuscitation
    Faculty, Center for Advanced Pediatric and Perinatal Education (CAPE)
    Co-Founder, Cadence Digital, Inc./ EMME

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones II Professor in the School of Engineering

    Bio The processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)

    Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

  • Connie Fung

    Connie Fung

    Postdoctoral Research Fellow, Pathology

    Bio Connie received her B.S. in Microbiology, Immunology, and Molecular Genetics from UCLA, where she conducted research on how the eukaryotic parasite Toxoplasma gondii invades and replicates inside host cells in the lab of Dr. Peter Bradley. Subsequently, she obtained her Ph.D. in Microbiology & Immunology from Stanford University with Dr. Manuel Amieva. Her thesis research involved the use of high-resolution microscopy to study how the bacterium Helicobacter pylori establishes and maintains persistent colonization of the gastric epithelium. Connie joined Dr. Michael Howitt's lab as a postdoctoral research fellow in 2019 and is currently investigating how tuft cells, specialized taste-chemosensory cells, modulate mucosal immunity in response to intestinal parasites.

  • Lawrence Fung MD PhD

    Lawrence Fung MD PhD

    Assistant Professor of Psychiatry and Behavioral Sciences (Child and Adolescent Psychiatry) at the Stanford University Medical Center

    Current Research and Scholarly Interests Dr. Lawrence Fung is a scientist and psychiatrist specialized in autism spectrum disorder (ASD), and the father of a neurodiverse teenager with ASD. He is the director of the Stanford Neurodiversity Project, which strives to uncover the strengths of neurodiverse individuals and utilize their talents to increase innovation and productivity of the society as a whole. He directs the Neurodiverse Student Support Program, Neurodiversity at Work Program (recently funded by Autism Speaks), and Adult Neurodevelopment Clinic at Stanford. Dr. Fung is an assistant professor in the Department of Psychiatry and Behavioral Sciences at Stanford University. His lab advances the understanding of neural bases of human socio-communicative and cognitive functions by using novel neuroimaging and technologies. His team devise and implement novel interventions to improve the lives of neurodiverse individuals by maximizing their potential and productivity. For example, he is conducting a study to demonstrate that specialized employment programs such as Neurodiversity at Work program will result in higher retention rates and quality of life.

Footer Links:

Stanford Medicine Resources: