Bio

Current Role at Stanford


Program Manager

Publications

Journal Articles


  • Noncontact, low-frequency ultrasound therapy enhances neovascularization and wound healing in diabetic mice. Plastic and reconstructive surgery Maan, Z. N., Januszyk, M., Rennert, R. C., Duscher, D., Rodrigues, M., Fujiwara, T., Ho, N., Whitmore, A., Hu, M. S., Longaker, M. T., Gurtner, G. C. 2014; 134 (3): 402e-11e

    Abstract

    Chronic wounds are a major source of morbidity for patients and represent a significant health burden. Implementing noninvasive techniques that accelerate healing of these wounds would provide great benefit. Ultrasound appears to be an effective modality for the treatment of chronic wounds in humans. MIST Therapy is a noncontact, low-frequency ultrasound treatment delivered through a saline mist. A variety of mechanisms have been proposed to explain the efficacy of ultrasound therapy, but the underlying molecular and cellular pathways impacted by this technique remain unclear. The in vivo effect of noncontact, low-frequency ultrasound was therefore examined in a humanized excisional wound model.The treatment group received noncontact, low-frequency ultrasound therapy three times per week, whereas the control group received a standard dressing change. Wounds were photographed at regular intervals to calculate healing kinetics. Wound tissue was harvested and processed for histology, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay.The MIST group demonstrated significantly accelerated wound healing, with 17.3 days to wound closure compared with 24 days in the controls (p < 0.05). This improvement became evident by day 9, with healing evidenced by significantly decreased mean wound area relative to original size (68 percent versus 80 percent; p < 0.01). Expression of markers of neovascularization (stromal cell-derived factor 1, vascular endothelial growth factor, and CD31) was also increased in the wound beds of noncontact, low-frequency ultrasound-treated mice compared with controls.Noncontact, low-frequency ultrasound treatment improves neovascularization and wound closure rates in excisional wounds for diabetic mice, likely because of the stimulated release of angiogenic factors.

    View details for DOI 10.1097/PRS.0000000000000467

    View details for PubMedID 25158717

  • Mechanotransduction and fibrosis JOURNAL OF BIOMECHANICS Duscher, D., Maan, Z. N., Wong, V. W., Rennert, R. C., Januszyk, M., Rodrigues, M., Hu, M., Whitmore, A. J., Whittam, A. J., Longaker, M. T., Gurtner, G. C. 2014; 47 (9): 1997-2005

    Abstract

    Scarring and tissue fibrosis represent a significant source of morbidity in the United States. Despite considerable research focused on elucidating the mechanisms underlying cutaneous scar formation, effective clinical therapies are still in the early stages of development. A thorough understanding of the various signaling pathways involved is essential to formulate strategies to combat fibrosis and scarring. While initial efforts focused primarily on the biochemical mechanisms involved in scar formation, more recent research has revealed a central role for mechanical forces in modulating these pathways. Mechanotransduction, which refers to the mechanisms by which mechanical forces are converted to biochemical stimuli, has been closely linked to inflammation and fibrosis and is believed to play a critical role in scarring. This review provides an overview of our current understanding of the mechanisms underlying scar formation, with an emphasis on the relationship between mechanotransduction pathways and their therapeutic implications.

    View details for DOI 10.1016/j.jbiomech.2014.03.031

    View details for Web of Science ID 000338621900009

  • Understanding regulatory pathways of neovascularization in diabetes Expert Review of Endocrinology & Metabolism Maan, Z., Rodrigues, M., Rennert, R., Whitmore, A., Duscher, D., Januszky, M., Hu, M., Whittam, A., Davis, C., Gurtner, G., et al 2014; 9 (5): 487-501
  • Sutureless Microvascular Anastomosis for Clinical Application Using Poloxamer 188 as an Optimal Transient Thermoreversible Stent Journal of the American College of Surgeons Davis, C. R., Rappleye, T. C., Than, P., Whitmore, A., Maan, Z. N., Rodrigues, M., Bishop, S., Gurtner, G. C. 2014; 219 (3): S89
  • Exercise Induces SDF-1 Mediated Release of Endothelial Progenitor Cells with Increased Vasculogenic Function Plastic and Reconstructive Surgery Edwin, C., Paterno, J., Duscher, D., Maan, Z., Chen, J., Januszyk, M., Rodrigues, M., Rennert, R., Bishop, S., Whitmore, A., Whittam, A., Longaker, M., Gurtner, G. 2014

Footer Links:

Stanford Medicine Resources: