Bio

Professional Education


  • Doctor of Philosophy, Universidad Autonoma De Madrid (2014)
  • Master of Science, Universidad Autonoma De Madrid (2010)
  • Bachelor's Degree, Universidad Francisco de Vitoria, Biotechnology (2009)

Stanford Advisors


Publications

Journal Articles


  • The pluripotency factor NANOG promotes the formation of squamous cell carcinomas SCIENTIFIC REPORTS Palla, A. R., Piazzolla, D., Alcazar, N., Canamero, M., Grana, O., Gomez-Lopez, G., Dominguez, O., Duenas, M., Paramio, J. M., Serrano, M. 2015; 5

    Abstract

    NANOG is a key pluripotency factor in embryonic stem cells that is frequently expressed in squamous cell carcinomas (SCCs). However, a direct link between NANOG and SCCs remains to be established. Here, we show that inducible overexpression of NANOG in mouse skin epithelia favours the malignant conversion of skin papillomas induced by chemical carcinogenesis, leading to increased SCC formation. Gene expression analyses in pre-malignant skin indicate that NANOG induces genes associated to epithelial-mesenchymal transition (EMT). Some of these genes are directly activated by NANOG, including EMT-associated genes Zeb1, Zeb2, Twist1, Prrx1 and miR-21. Finally, endogenous NANOG binds to the promoters of theses genes in human SCC cells and, moreover, NANOG induces EMT features in primary keratinocytes. These results provide in vivo evidence for the oncogenic role of NANOG in squamous cell carcinomas.

    View details for DOI 10.1038/srep10205

    View details for Web of Science ID 000355295100001

    View details for PubMedID 25988972

  • Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia NATURE COMMUNICATIONS Piazzolla, D., Palla, A. R., Pantoja, C., Canamero, M., Perez de Castro, I., Ortega, S., Gomez-Lopez, G., Dominguez, O., Megias, D., Roncador, G., Luque-Garcia, J. L., Fernandez-Tresguerres, B., Fernandez, A. F., Fraga, M. F., Rodriguez-Justo, M., Manzanares, M., Sanchez-Carbayo, M., Maria Garcia-Pedrero, J., Rodrigo, J. P., Malumbres, M., Serrano, M. 2014; 5

    Abstract

    NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation. NANOG transcriptionally activates the mitotic programme, including Aurora A kinase (Aurka), in stratified epithelia, and endogenous NANOG directly binds to the Aurka promoter in primary keratinocytes. Interestingly, overexpression of Nanog or Aurka in mice increased proliferation and aneuploidy in the oesophageal basal epithelium. Finally, inactivation of NANOG in cell lines from oesophageal or head and neck squamous cell carcinomas (ESCCs or HNSCCs, respectively) results in lower levels of AURKA and decreased proliferation, and NANOG and AURKA expression are positively correlated in HNSCCs. Together, these results indicate that NANOG has a lineage-restricted mitogenic function in stratified epithelia.

    View details for DOI 10.1038/ncomms5226

    View details for Web of Science ID 000338839900001

    View details for PubMedID 24979572

  • Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer ONCOGENE Palla, A. R., Piazzolla, D., Abad, M., Li, H., Dominguez, O., Schonthaler, H. B., Wagner, E. F., Serrano, M. 2014; 33 (19): 2513-2519

    Abstract

    NANOG is a key transcription factor for pluripotency in embryonic stem cells. The analysis of NANOG in human cells is confounded by the presence of multiple and highly similar paralogs. In particular, there are three paralogs encoding full-length proteins, namely, NANOG1, NANOG2 and NANOGP8, and at least eight additional paralogs that do not encode full-length NANOG proteins. Here, we have examined NANOG family expression in human embryonic stem cells (hESCs) and in human cancer cell lines using a multi-NANOG PCR that amplifies the three functional paralogs and most of the non-functional ones. As anticipated, we found that hESCs express large amounts of NANOG1 and, interestingly, they also express NANOG2. In contrast, most human cancer cells tested express NANOGP8 and the non-coding paralogs NANOGP4 and NANOGP5. Notably, in some cancer cell lines, the NANOG protein levels produced by NANOGP8 are comparable to those produced by NANOG1 in pluripotent cells. Finally, we show that NANOGP8 is as active as NANOG1 in the reprogramming of human and murine fibroblasts into induced pluripotent stem cells. These results show that cancer-associated NANOGP8 can contribute to promote de-differentiation and/or cellular plasticity.

    View details for DOI 10.1038/onc.2013.196

    View details for Web of Science ID 000336033600011

    View details for PubMedID 23752184

Footer Links:

Stanford Medicine Resources: