Bio

Stanford Advisors


Publications

All Publications


  • Temporal changes in peritoneal cell phenotype and neoelastic matrix induction with hyaluronan oligomers and TGF-?1 after implantation of engineered conduits. Journal of tissue engineering and regenerative medicine Shojaee, M., Swaminathan, G., Bashur, C. A., Ramamurthi, A. 2018; 12 (6): 1420?31

    Abstract

    The neoassembly and maturation of elastic matrix is an important challenge for engineering small-diameter grafts for patients with peripheral artery disease. We have previously shown that hyaluronan oligomers and transforming growth factor-? (elastogenic factors or EFs) promote elastogenesis in smooth muscle cell (SMC) culture. However, their combined effects on macrophages and inflammatory cells in vivo are unknown. This information is needed to use the body (e.g., peritoneal cavity) as an "in vivo bioreactor" to recruit autologous cells to implanted EF-functionalized scaffolds. In this study, we determined if peritoneal fluid cells respond to EFs like smooth muscle cells and if these responses differ between cells sourced during different stages of inflammation triggered by scaffold implantation. Electrospun poly(?-caprolactone)/collagen conduits were implanted in the peritoneal cavity prior to peritoneal fluid collection at 3-42 days postimplantation. Cells from the fluid were cultured in vitro with and without EFs to determine their response. Their phenotype/behaviour was assessed with a DNA assay, quantitative real-time PCR, and immunofluorescence. The EFs reduced peritoneal cell proliferation, maintained cell contractility, and unexpectedly did not exhibit proelastic effects, which we attributed to differences in cell density. We found the greatest elastin deposition in regions containing a high cell density. Further, we found that cells isolated from the peritoneal cavity at longer times after conduit implantation responded better to the EFs and exhibited more CD31 expression than cells at an earlier time point. Overall, this study provides information about the potential use of EFs in vivo and can guide the design of future tissue-engineered vascular grafts.

    View details for DOI 10.1002/term.2674

    View details for PubMedID 29701914

  • Phenotype-based selection of bone marrow mesenchymal stem cell-derived smooth muscle cells for elastic matrix regenerative repair in abdominal aortic aneurysms. Journal of tissue engineering and regenerative medicine Swaminathan, G., Stoilov, I., Broekelmann, T., Mecham, R., Ramamurthi, A. 2018; 12 (1): e60?e70

    Abstract

    Chronic proteolytic disruption of elastic fibres within the abdominal aortic wall results in wall vessel expansion to form rupture-prone abdominal aortic aneurysms (AAA). Arresting AAA growth is not possible as adult vascular smooth muscle cells (SMCs) poorly auto-regenerate and repair elastic fibres. Thus, there is a need to identify alternate cell sources capable of robust elastic matrix assembly to overcome elastolysis in the AAA wall. Previously, we demonstrated the superior elastogenic properties of rat bone marrow mesenchymal stem cell (BM-MSC)-derived SMCs (BM-SMCs) relative to aneurysmal and healthy rat aortic SMCs. In the present study, we investigate how phenotypic coordinates of the derived BM-SMCs, in turn dependent on conditions of BM-MSC differentiation, impact their elastic matrix synthesis abilities. More specifically, we investigated how glucose content, serum levels and the presence of transforming growth factor (TGF)-?1 supplements alone or together with platelet-derived growth factor (PDGF-BB) in the differentiation medium influence phenotype of, and elastogenesis by derived rat BM-SMCs. BM-SMCs generated in low-glucose and 10% v/v serum conditions in the presence of TGF-?1 with or without PDGF-BB exhibited a mature phenotype characterized by contractility and migrative tendencies similar to healthy rat aortic SMCs, and yet capable of robust tropoelastin (precursor) synthesis and assembly of a fibrous, highly crosslinked elastic matrix. Thus, we have identified metrics and conditions for selecting BM-SMCs with superior elastogenesis for in situ elastic matrix regeneration. Future studies will focus on characterizing these specific BM-SMC subtypes for their pro-elastogenic and anti-proteolytic effects on aneurysmal SMCs to confirm their preferred use for therapy aimed at AAA tissue regenerative repair. Copyright © 2016 John Wiley & Sons, Ltd.

    View details for DOI 10.1002/term.2349

    View details for PubMedID 27860330

  • Magnetically-responsive, multifunctional drug delivery nanoparticles for elastic matrix regenerative repair. Acta biomaterialia Sivaraman, B., Swaminathan, G., Moore, L., Fox, J., Seshadri, D., Dahal, S., Stoilov, I., Zborowski, M., Mecham, R., Ramamurthi, A. 2017; 52: 171?86

    Abstract

    Arresting or regressing growth of abdominal aortic aneurysms (AAAs), localized expansions of the abdominal aorta are contingent on inhibiting chronically overexpressed matrix metalloproteases (MMPs)-2 and -9 that disrupt elastic matrix within the aortic wall, concurrent with providing a stimulus to augmenting inherently poor auto-regeneration of these matrix structures. In a recent study we demonstrated that localized, controlled and sustained delivery of doxycycline (DOX; a tetracycline-based antibiotic) from poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), enhances elastic matrix deposition and MMP-inhibition at a fraction of the therapeutically effective oral dose. The surface functionalization of these NPs with cationic amphiphiles, which enhances their arterial uptake, was also shown to have pro-matrix regenerative and anti-MMP effects independent of the DOX. Based on the hypothesis that the incorporation of superparamagnetic iron oxide NPs (SPIONs) within these PLGA NPs would enhance their targetability to the AAA site under an applied external magnetic field, we sought to evaluate the functional effects of NPs co-encapsulating DOX and SPIONs (DOX-SPION NPs) on elastic matrix regeneration and MMP synthesis/activity in vitro within aneurysmal smooth muscle cell (EaRASMC) cultures. The DOX-SPION NPs were mobile under an applied external magnetic field, while enhancing elastic matrix deposition 1.5-2-fold and significantly inhibiting MMP-2 synthesis and MMP-2 and -9 activities, compared to NP-untreated control cultures. These results illustrate that the multifunctional benefits of NPs are maintained following SPION co-incorporation. Additionally, preliminary studies carried out demonstrated enhanced targetability of SPION-loaded NPs within proteolytically-disrupted porcine carotid arteries ex vivo, under the influence of an applied external magnetic field. Thus, this dual-agent loaded NP system proffers a potential non-surgical option for treating small growing AAAs, via controlled and sustained drug release from multifunctional, targetable nanocarriers.Proactive screening of high risk elderly patients now enables early detection of abdominal aortic aneurysms (AAAs). There are no established drug-based therapeutic alternatives to surgery for AAAs, which is unsuitable for many elderly patients, and none which can achieve restore disrupted and lost elastic matrix in the AAA wall, which is essential to achieve growth arrest or regression. We have developed a first generation design of polymer nanoparticles (NPs) for AAA tissue localized delivery of doxycycline, a modified tetracycline drug at low micromolar doses at which it provides both pro-elastogenic and anti-proteolytic benefits that can augment elastic matrix regenerative repair. The nanocarriers themselves are also uniquely chemically functionalized on their surface to also provide them pro-elastin-regenerative & anti-matrix degradative properties. To provide an active driving force for efficient uptake of intra-lumenally infused NPs to the AAA wall, in this work, we have rendered our polymer NPs mobile in an applied magnetic field via co-incorporation of super-paramagnetic iron oxide NPs. We demonstrate that such modifications significantly improve wall uptake of the NPs with no significant changes to their physical properties and regenerative benefits. Such NPs can potentially stimulate structural repair in the AAA wall following one time infusion to delay or prevent AAA growth to rupture. The therapy can provide a non-surgical treatment option for high risk AAA patients.

    View details for DOI 10.1016/j.actbio.2016.11.048

    View details for PubMedID 27884774

  • Pro-elastogenic effects of bone marrow mesenchymal stem cell-derived smooth muscle cells on cultured aneurysmal smooth muscle cells. Journal of tissue engineering and regenerative medicine Swaminathan, G., Gadepalli, V. S., Stoilov, I., Mecham, R. P., Rao, R. R., Ramamurthi, A. 2017; 11 (3): 679?93

    Abstract

    Abdominal aortic aneurysms (AAAs) involve slow proteolysis and loss of structural matrix components (collagen and elastin), which lead to wall thinning, weakening and ultimate rupture. At this time, no established non-surgical therapy is available to slow or arrest AAA growth. Inhibiting matrix metalloproteases (MMPs; e.g. MMP2 and -9) overexpressed within AAAs is insufficient to arrest AAA growth, since resident smooth muscle cells (SMCs) are poorly elastogenic and cannot overcome elastolysis to reinstate a healthy elastic matrix. Towards overcoming this limitation, this first study sought to determine the utility of rat bone marrow mesenchymal stem cell (BM-MSC)-derived SMCs to stimulate elastin and elastic matrix synthesis and assembly by aneurysmal SMCs (EaRASMCs). BM-MSCs were successfully differentiated into cells of an SMC lineage (SMLCs). Our study indicates that BM-MSC-derived SMLCs secrete trophic factors, contained in conditioned medium (CM) from their cultures, that, when exposed to EaRASMC cultures in real time, stimulate elastin precursor and matrix deposition and crosslinking by these elastogenically deficient cells, with added benefits in terms of attenuating MMPs, specifically MMP9. The results thus lend support to a proposed cell therapy for AAAs, based on the use of BM-MSC-derived SMLCs. Although we observed no particular improvement in elastic fibre formation, no attenuation of MMP2 activity and increase in amounts of active MMP2 enzyme, we believe that this study justifies follow-up studies to improve upon these outcomes. Future studies will explore the effects of concentrated CM collected from long-term SMLC cultures on EaRASMCs and also investigate the elastogenic output of SMLCs themselves. Copyright © 2014 John Wiley & Sons, Ltd.

    View details for DOI 10.1002/term.1964

    View details for PubMedID 25376929

  • Smooth Muscle Progenitor Cells Derived From Human Pluripotent Stem Cells Induce Histologic Changes in Injured Urethral Sphincter STEM CELLS TRANSLATIONAL MEDICINE Li, Y., Wen, Y., Wang, Z., Wei, Y., Wani, P., Green, M., Swaminathan, G., Ramamurthi, A., Pera, R. R., Chen, B. 2016; 5 (12): 1719-1729

    Abstract

    : Data suggest that myoblasts from various sources, including bone marrow, skeletal muscle, and adipose tissue, can restore muscle function in patients with urinary incontinence. Animal data have indicated that these progenitor cells exert mostly a paracrine effect on the native tissues rather than cell regeneration. Limited knowledge is available on the in vivo effect of human stem cells or muscle progenitors on injured muscles. We examined in vivo integration of smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs). pSMCs were derived from a human embryonic stem cell line (H9-ESCs) and two induced pluripotent stem cell (iPSC) lines. pSMCs were injected periurethrally into urethral injury rat models (2 × 10(6) cells per rat) or intramuscularly into severe combined immunodeficiency mice. Histologic and quantitative image analysis revealed that the urethras in pSMC-treated rats contained abundant elastic fibers and thicker muscle layers compared with the control rats. Western blot confirmed increased elastin/collagen III content in the urethra and bladder of the H9-pSMC-treated rats compared with controls. iPSC-pSMC treatment also showed similar trends in elastin and collagen III. Human elastin gene expression was not detectable in rodent tissues, suggesting that the extracellular matrix synthesis resulted from the native rodent tissues rather than from the implanted human cells. Immunofluorescence staining and in vivo bioluminescence imaging confirmed long-term engraftment of pSMCs into the host urethra and the persistence of the smooth muscle phenotype. Taken together, the data suggest that hPSC-derived pSMCs facilitate restoration of urethral sphincter function by direct smooth muscle cell regeneration and by inducing native tissue elastin/collagen III remodeling.The present study provides evidence that a pure population of human smooth muscle progenitor cells (pSMCs) derived from human pluripotent stem cells (hPSCs) (human embryonic stem cells and patient induced pluripotent stem cells) restores urethral sphincter function by two mechanisms: modulation of extracellular matrix protein metabolism in vivo and pSMC proliferation and differentiation into smooth muscle cells to regenerate the muscle layer in the lower urinary tract. These findings on the in vivo effects of human pSMCs should aid in optimizing regenerative therapies using human myoblasts.

    View details for DOI 10.5966/sctm.2016-0035

    View details for PubMedID 27460854

  • IN VIVO INTEGRATION AND MECHANISM OF ACTION OF SMOOTH MUSCLE CELL PRECURSORS DERIVED FROM HUMAN PLURIPOTENT STEM CELLS Li, Y., Wen, Y., Wang, Z., Wei, Y., Green, M., Wani, P., Swaminathan, G., Ramamurthi, A., Pera, R., Chen, B. WILEY-BLACKWELL. 2016: S18?S19
  • Magnetically Responsive Bone Marrow Mesenchymal Stem Cell-Derived Smooth Muscle Cells Maintain Their Benefits to Augmenting Elastic Matrix Neoassembly. Tissue engineering. Part C, Methods Swaminathan, G., Sivaraman, B., Moore, L., Zborowski, M., Ramamurthi, A. 2016; 22 (4): 301?11

    Abstract

    Abdominal aortic aneurysms (AAA) represent abnormal aortal expansions that result from chronic proteolytic breakdown of elastin and collagen fibers by matrix metalloproteases. Poor elastogenesis by adult vascular smooth muscle cells (SMCs) limits regenerative repair of elastic fibers, critical for AAA growth arrest. Toward overcoming these limitations, we recently demonstrated significant elastogenesis by bone marrow mesenchymal stem cell-derived SMCs (BM-SMCs) and their proelastogenesis and antiproteolytic effects on rat aneurysmal SMCs (EaRASMCs). We currently investigate the effects of super paramagnetic iron oxide nanoparticle (SPION) labeling of BM-SMCs, necessary to magnetically guide them to the AAA wall, on their functional benefits. Our results indicate that SPION-labeling is noncytotoxic and does not adversely impact the phenotype and elastogenesis by BM-SMCs. In addition, SPION-BM-SMCs showed no changes in the ability of the BM-SMCs to stimulate elastin regeneration and attenuate proteolytic activity by EaRASMCs. Together, our results are promising toward the utility of SPIONs for magnetic targeting of BM-SMCs for in situ AAA regenerative repair.

    View details for DOI 10.1089/ten.TEC.2015.0349

    View details for PubMedID 26830683

    View details for PubMedCentralID PMC4827279

Footer Links:

Stanford Medicine Resources: