School of Medicine

Showing 1-10 of 17 Results

  • Axel Brunger

    Axel Brunger

    Professor of Molecular and Cellular Physiology, of Neurology, of Photon Science and, by courtesy, of Structural Biology

    Current Research and Scholarly Interests One of Axel Brunger's major goals is to decipher the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, combined with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.

  • Zev Bryant

    Zev Bryant

    Associate Professor of Bioengineering and, by courtesy, of Structural Biology

    Current Research and Scholarly Interests Molecular motors lie at the heart of biological processes from DNA replication to vesicle transport. My laboratory seeks to understand the physical mechanisms by which these nanoscale machines convert chemical energy into mechanical work.

  • Patricia Cross

    Patricia Cross

    Professor (Teaching) of Structural Biology, Emerita

    Current Research and Scholarly Interests I am not now actively involved in research, but my past endeavors remain central to my position in guiding medical students in their scholarship pursuits.
    The cited publications represent three areas of interest:
    (1) medical student research (Jacobs and Cross)
    (2) women in medicine (Cross and Steward)
    (3) the reproductive physiology of early development (Cross and Brinster)
    Only one publication is listed in this area since the research is not current, but others (in e.g. Nature, DevBiol, ExpCellRes) give a broader picture of my pursuit when at the University of Pennsylvania.

  • Adam de la Zerda

    Adam de la Zerda

    Assistant Professor of Structural Biology and, by courtesy, of Electrical Engineering

    Current Research and Scholarly Interests Molecular imaging technologies for studying cancer biology in vivo

  • Ron Dror

    Ron Dror

    Associate Professor of Computer Science and, by courtesy, of Molecular and Cellular Physiology and of Structural Biology

    Bio Ron Dror is an Associate Professor of Computer Science and, by courtesy, Molecular and Cellular Physiology and Structural Biology at Stanford University, where he is also affiliated with the Institute for Computational and Mathematical Engineering, the Stanford Artificial Intelligence Lab, Bio-X, ChEM-H, and the Biophysics and Biomedical Informatics Programs. Dr. Dror's research at Stanford addresses a broad set of computational biology problems related to the spatial organization and dynamics of biomolecules and cells.

    Before joining Stanford in March 2014, Dr. Dror served as second-in-command of D. E. Shaw Research, a hundred-person company, having joined in 2002 as its first hire. At DESRES, he focused on high-performance computing and biomolecular simulation?in particular, developing technology that accelerates molecular dynamics simulations by orders of magnitude, and applying these simulations to the study of protein function, protein folding, and protein-drug interactions (part of a project highlighted by Science as one of the top 10 scientific breakthroughs of 2010).

    Dr. Dror earned a PhD in Electrical Engineering and Computer Science at MIT, an MPhil in Biological Sciences as a Churchill Scholar at the University of Cambridge, and both a BA in Mathematics and a BS in Electrical and Computer Engineering at Rice University, summa cum laude. As a student, he worked in genomics, vision, image analysis, and neuroscience. He has been awarded a Fulbright Scholarship and fellowships from the National Science Foundation, the Department of Defense, and the Whitaker Foundation, as well as a Gordon Bell Prize and several Best Paper awards.

  • Chris Garcia

    Chris Garcia

    Younger Family Professor and Professor of Structural Biology

    Current Research and Scholarly Interests Structural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.

  • Ted Jardetzky

    Ted Jardetzky

    Professor of Structural Biology

    Current Research and Scholarly Interests The Jardetzky laboratory is studying the structures and mechanisms of macromolecular complexes important in viral pathogenesis, allergic hypersensitivities and the regulation of cellular growth and differentiation, with an interest in uncovering novel conceptual approaches to intervening in disease processes. Ongoing research projects include studies of paramyxovirus and herpesvirus entry mechanisms, IgE-receptor structure and function and TGF-beta ligand signaling pathways.

  • Roger Kornberg

    Roger Kornberg

    Mrs. George A. Winzer Professor in Medicine

    Current Research and Scholarly Interests We study the regulation of transcription, the first step in gene expression. The main lines of our work are 1) reconstitution of the process with more than 50 pure proteins and mechanistic analysis, 2) structure determination of the 50 protein complex at atomic resolution, and 3) studies of chromatin remodelling, required for transcription of the DNA template in living cells

  • Michael Levitt

    Michael Levitt

    Robert W. and Vivian K. Cahill Professor in Cancer Research in the School of Medicine and Professor, by courtesy, of Computer Science

    Current Research and Scholarly Interests having pioneered, we (a) predict folding of a polypeptide and RNA chains into a unique native-structure, we (b) model protein structure using the well-established paradigms that similar protein sequences imply similar three-dimensional structures, and (c) we are focusing on mesoscale modeling of large macromolecular complexes such as RNA polymerase and the mammalian chaperonin.

Footer Links:

Stanford Medicine Resources: