School of Medicine


Showing 1-10 of 22 Results

  • Axel Brunger

    Axel Brunger

    Professor of Molecular and Cellular Physiology, of Neurology, of Photon Science and, by courtesy, of Structural Biology

    Current Research and Scholarly Interests One of Axel Brunger's major goals is to decipher the molecular mechanisms of synaptic neurotransmitter release by conducting imaging and single-molecule/particle reconstitution experiments, combined with near-atomic resolution structural studies of the synaptic vesicle fusion machinery.

  • Liang Feng

    Liang Feng

    Assistant Professor of Molecular and Cellular Physiology

    Current Research and Scholarly Interests We are interested in the structure, dynamics and function of eukaryotic transport proteins mediating ions and major nutrients crossing the membrane, the kinetics and regulation of transport processes, the catalytic mechanism of membrane embedded enzymes and the development of small molecule modulators based on the structure and function of membrane proteins.

  • Chris Garcia

    Chris Garcia

    Younger Family Professor and Professor of Structural Biology

    Current Research and Scholarly Interests Structural and functional studies of transmembrane receptor interactions with their ligands in systems relevant to human health and disease - primarily in immunity, infection, and neurobiology. We study these problems using protein engineering, structural, biochemical, and combinatorial biology approaches.

  • Miriam B. Goodman

    Miriam B. Goodman

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly Interests We study the molecular events that give rise to the sensation of touch and temperature in C. elegans. To do this, we use a combination of quantitative behavioral analysis, genetics, in vivo electrophysiology, and heterologous expression of ion channels. We also collaborate with Pruitt's group in Mechanical Engineering to develop and fabricate novel devices for the study of sensory transduction.

  • John Huguenard

    John Huguenard

    Professor of Neurology, of Neurosurgery and, by courtesy, of Molecular and Cellular Physiology

    Current Research and Scholarly Interests We are interested in the neuronal mechanisms that underlie synchronous oscillatory activity in the thalamus, cortex and the massively interconnected thalamocortical system. Such oscillations are related to cognitive processes, normal sleep activities and certain forms of epilepsy. Our approach is an analysis of the discrete components (cells, synapses, microcircuits) that make up thalamic and cortical circuits, and reconstitution of components into in silico computational networks.

  • Marianna Kiraly

    Marianna Kiraly

    Basic Life Science Research Scientist, Molecular & Cellular Physiology

    Current Research and Scholarly Interests My research is focusing on correlating physiological changes of brain micro-circuits with resulting anatomical changes. Currently I am studying how the induction of synaptic plasticity results in a change in the number of synapses made between a pair of neurons, and whether sub-synaptic receptor localization can account for the mechanisms of certain synaptic states. I am testing two competing hypotheses: whether 1) certain subtypes of glutamate receptors are sorted based on interactions with the unique amino acid sequence of each subunit's C-terminal tail (tail-sorting model); or 2) long term potentiation/ depression results from changes in postsynaptic density and/or the volume of the postsynaptic spine (indiscriminate model). Understanding these processes will help address a variety of issues in normal and pathological brain functions, including the basic molecular and cellular mechanisms of learning and memory formation.

    In another ongoing project, I am characterizing the myelination of inhibitory neurons and explore its functional significance. Only some neuron types form myelinated axons, for example cortical pyramidal cells, cerebellar Purkinje cells, and parvalbumin-expressing subclass of basket interneurons. Surprisingly little is known about the structural and molecular organization of myelin on different neuron types. Our preliminary data reveal that there are significant differences between the myelin of inhibitory and excitatory axons in cortex. My future studies will further compare molecular and structural features of myelinated axons of PV basket cells and excitatory neurons in cortical gray matter, as well as their involvement in cortical plasticity and pathology (multiple sclerosis model).

  • Brian Kobilka

    Brian Kobilka

    Helene Irwin Fagan Chair in Cardiology and Professor, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Structure, function and physiology of adrenergic receptors.

  • Richard Lewis

    Richard Lewis

    Professor of Molecular and Cellular Physiology

    Current Research and Scholarly Interests We study molecular mechanisms of calcium signaling with a focus on store-operated CRAC channels and their essential roles in T cell development and function. Currently we aim to define the molecular mechanism for CRAC channel activation and the means by which calcium signal dynamics mediate specific activation of transcription factors and T-cell genes during development.

Footer Links:

Stanford Medicine Resources: