Bio

Stanford Advisors


Publications

All Publications


  • Single-sided NMR to estimate morphological parameters of the trabecular bone structure. Magnetic resonance in medicine Barbieri, M., Fantazzini, P., Bortolotti, V., Baruffaldi, F., Festa, A., Manners, D. N., Testa, C., Brizi, L. 2020

    Abstract

    PURPOSE: Single-sided 1 H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients.METHODS: Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of 1 H nuclei of fluids, including marrow, confined inside the bone, was analyzed by quasi-continuous T2 distributions and separated into two 1 H pools: short and long T2 components. The NMR parameters were estimated using models of trabecular bone structure, and compared with the corresponding micro-CT.RESULTS: Without any further assumptions, the internal reference parameter (short T2 signal intensity fraction) enabled prediction of the micro-CT parameters BV/TV (volume of the trabeculae/total sample volume) and BS/TV (external surface of the trabeculae/total sample volume) with linear correlation coefficient >0.80. The assignment of the two pools to intratrabecular and intertrabecular components yielded an estimate of average intratrabecular porosity (335)%. Using the proposed models, the NMR-estimated BV/TV and BS/TV were found to be linearly related to the corresponding micro-CT values with high correlation (>0.90 for BV/TV; >0.80 for BS/TV) and agreement coefficients.CONCLUSION: Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.

    View details for DOI 10.1002/mrm.28648

    View details for PubMedID 33349979

  • Bone volume-to-total volume ratio measured in trabecular bone by single-sided NMR devices MAGNETIC RESONANCE IN MEDICINE Brizi, L., Barbieri, M., Baruffaldi, F., Bortolotti, V., Fersini, C., Liu, H., d'Eurydice, M., Obruchkov, S., Zong, F., Galvosas, P., Fantazzini, P. 2018; 79 (1): 501?10

    Abstract

    Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone.Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients.The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values.Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. 2017 International Society for Magnetic Resonance in Medicine.

    View details for DOI 10.1002/mrm.26697

    View details for Web of Science ID 000417926300049

    View details for PubMedID 28394083

Footer Links:

Stanford Medicine Resources: