School of Medicine


Showing 121-140 of 157 Results

  • Lawrence Recht, MD

    Lawrence Recht, MD

    Professor of Neurology and, by courtesy, of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly Interests Our laboratory focuses on two interrelated projects: (1) assessment of glioma development within the framework of the multistage model of carcinogenesis through utilization of the rodent model of ENU neurocarcinogenesis; and (2) assessment of stem cell specification and pluripotency using an embryonic stem cell model system in which neural differentiation is induced.

  • Richard J. Reimer, MD

    Richard J. Reimer, MD

    Associate Professor of Neurology and, by courtesy, of Molecular and Cellular Physiology at the Palo Alto Veterans Administration Health Care System

    Current Research and Scholarly Interests Reimer Lab interests

    A primary interest of our lab is to understand how nerve cells make and recycle neurotransmitters, the small molecules that they use to communicate with each other. In better defining these processes we hope to achieve our long-term goal of identifying novel sites for treatment of diseases such as epilepsy and Parkinson Disease. In our studies on neurotransmitter metabolism we have focused our efforts on transporters, a functional class of proteins that move neurotransmitters and other small molecules across membranes in cells. Transporters have many characteristics that make them excellent pharmacological targets, and not surprisingly some of the most effective treatments for neuropsychiatric disorders are directed at transporters. We are specifically focusing on two groups of transporters – vesicular neurotransmitter transporters that package neurotransmitters into vesicles for release, and glutamine transporters that shuttle glutamine, a precursor for two major neurotransmitters glutamate and GABA, to neurons from glia, the supporting cells that surround them. We are pursuing these goals through molecular and biochemical studies, and, in collaboration with the Huguenard and Prince labs, through physiological and biosensor based imaging studies to better understand how pharmacological targeting of these molecules will influence neurological disorders.

    A second interest of our lab is to define mechanism underlying the pathology of lysosomal storage disorders. Lysosomes are membrane bound acidic intracellular organelles filled with hydrolytic enzymes that normally function as recycling centers within cells by breaking down damaged cellular macromolecules. Several degenerative diseases designated as lysosomal storage disorders (LSDs) are associated with the accumulation of material within lysosomes. Tay-Sachs disease, Neimann-Pick disease and Gaucher disease are some of the more common LSDs. For reasons that remain incompletely understood, these diseases often affect the nervous system out of proportion to other organs. As a model for LSDs we are studying the lysosomal free sialic acid storage disorders. These diseases are the result of a defect in transport of sialic acid across lysosomal membranes and are associated with mutations in the gene encoding the sialic acid transporter sialin. We are using molecular, genetic and biochemical approaches to better define the normal function of sialin and to determine how loss of sialin function leads to neurodevelopmental defects and neurodegeneration associated with the lysosomal free sialic acid storage disorders.

  • maura ruzhnikov

    maura ruzhnikov

    Clinical Assistant Professor, Neurology & Neurological Sciences

    Bio Child neurologist and medical geneticist focusing on the diagnosis and management of rare neurologic disorders. Specific interests are in genetic epilepsy syndromes, childhood neurodegenerative and neurometabolic diseases and undiagnosed suspected genetic conditions.

  • Sarada Sakamuri, MD

    Sarada Sakamuri, MD

    Clinical Assistant Professor, Neurology & Neurological Sciences

    Bio Dr. Sarada Sakamuri specializes in neuromuscular medicine. Her interests are in peripheral nerve injury, neuromuscular ultrasound, EMG/NCS, neurogenetic disorders, clinical research, and medical education.

    Dr. Sakamuri studied psychology at Rutgers University and she graduated with Phi Beta Kappa distinction. She obtained her medical degree from Rutgers New Jersey Medical School, where she lead multiple community service and medical education activities and was elected to the Alpha Omega Alpha and Gold Humanism Honor Societies. She moved to the Bay Area to pursue neurology residency at Stanford and later served as chief resident. She then completed two years of fellowship in EMG/Clinical Neurophysiology and Neuromuscular Medicine and research training at Forbes Norris MDA/ALS Research Center.

    She serves as the Co-Director of the Center for Peripheral Nerve Surgery along with neurosurgeon Dr. Thomas J. Wilson. She performs advanced evaluations of peripheral nerve conditions by integrating nerve and muscle ultrasound and neurophysiologic testing (EMG/NCS) at the bedside. She has advanced training and particular interest in ultrasound, and sits on the Neuromuscular Ultrasound Committee of the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM).

    She is board-certified in Neurology and Neuromuscular disorders by the American Board of Psychiatry and Neurology (ABPN). She is certified in EMG/NCS by the American Board of Electrodiagnostic Medicine (ABEM).

    Dr. Sakamuri's other passion is medical education. She is the Associate Director of the Stanford Neuromuscular Medicine and Clinical Neurophysiology/EMG Fellowships. She supervises a weekly neurology resident continuity clinic and enjoys leading teaching sessions for neurology and physiatrist residents and medical students. She has also served as a clinical instructor at Jagiellonian University Medical College in Poland, and as a teaching fellow at Stanford School of Medicine.

  • Jacinda Sampson

    Jacinda Sampson

    Clinical Professor, Neurology & Neurological Sciences

    Bio Dr. Jacinda Sampson received her MD and a PhD in biochemistry from University of Alabama at Birmingham, and completed her neurology residency and neurogenetics fellowship at the University of Utah. She served at Columbia University Medical Center prior to joining Stanford University Medical Center in 2015. Her areas of interest include myotonic dystrophies, Duchenne muscular dystrophy, and neurogenetic disorders such as neurofibromatosis, hereditary spastic paraparesis, spinocerebellar ataxia, among others. She is interested in clinical trials for treatment of neurogenetic disorders, and is the clinical application of next-generation genomic sequencing to genetic testing.

  • Veronica E. Santini, MD

    Veronica E. Santini, MD

    Clinical Associate Professor, Neurology & Neurological Sciences

    Current Research and Scholarly Interests Please see our website @ http://med.stanford.edu/neurology/divisions/md.html

  • Robert Sapolsky

    Robert Sapolsky

    John A. and Cynthia Fry Gunn Professor and Professor of Neurology and of Neurosurgery

    Current Research and Scholarly Interests Neuron death, stress, gene therapy

  • Neil Schwartz, MD, PhD

    Neil Schwartz, MD, PhD

    Clinical Professor, Neurology & Neurological Sciences

    Current Research and Scholarly Interests My clinical interests involve inpatient and outpatient care of patients with neurovascular diseases, mostly ischemic and hemorrhagic stroke. I have a particular interest in cervical artery dissection, non-atherosclerotic vasculopathies, and stroke in the young.

  • Sharon Sha, MD, MS

    Sharon Sha, MD, MS

    Clinical Associate Professor, Neurology & Neurological Sciences

    Bio Dr. Sha is a Clinical Associate Professor of Neurology and Neurological Sciences at Stanford University where she serves as the Medical Director of the Stanford Neuroscience Clinical Trials Group, Co-Director of the Huntington?s Disease Center of Excellence and Ataxia Clinic, Co-Director of the Lewy Body Disease Association Research Center of Excellence, Clinical Core Co-Leader of the Stanford Alzheimer's Disease Research Center, and Director of the Behavioral Neurology Fellowship. Her clinical time is devoted to caring for patients with Alzheimer?s disease and other neurodegenerative disorders. Her research is devoted to finding treatments for cognitive disorders. Her recent work focused on the safety of young plasma for the treatment of Alzheimer?s disease.

    Dr. Sha received a Master?s degree in Physiology and an MD from Georgetown University, followed by Neurology training at UCLA and Stanford University. She completed a clinical and research fellowship in Behavioral Neurology at UCSF, where she focused on identifying biomarkers for genetic forms of frontotemporal dementia and caring for patients with movement disorders with cognitive impairment.

  • Mehrdad Shamloo

    Mehrdad Shamloo

    Professor (Research) of Neurosurgery and, by courtesy, of Neurology

    Current Research and Scholarly Interests The ultimate goal of the Shamloo laboratory is to rapidly advance our understanding of brain function at the molecular, cellular, circuit and behavioral levels, and to elucidate the pathological process underlying malfunction of the nervous system following injury and neurologic disorders such as stroke, Alzheimer's disease, Parkinson?s disease, and autism. We have been focusing on the noradrenergic system and approaches leading to restoration of brain adrenergic signaling in these disorders.

  • Yuen So, MD, PhD

    Yuen So, MD, PhD

    Professor of Neurology at the Stanford University Medical Center

    Current Research and Scholarly Interests Research in the diagnosis, pathophysiology and treatment of peripheral neuropathy, myasthenia gravis, motor neuron diseases including ALS and SMA, nerve injuries and muscle diseases. Application of clinical neurophysiological methods to neurological diagnosis. Development of evidence-based medicine pertaining to the practice of neurology.

  • Kristen Steenerson

    Kristen Steenerson

    Clinical Assistant Professor, Otolaryngology - Head & Neck Surgery Divisions

    Bio Kristen Steenerson is a board-certified neurologist with fellowship training in otoneurology. After graduating cum laude from Claremont McKenna College where she was honored as an All-American lacrosse defensive player, she continued on to medical school at the University of Utah in Salt Lake City, Utah. After four years of excellent training and annual ski passes, she proceeded to the Mayo Clinic in Arizona for neurology residency. There, she discovered the beauty of the Sonoran Desert as well as an unmet need in balance disorders and vertigo, motivating her to pursue a fellowship in otoneurology at Barrow Neurological Institute. She joins Stanford with positions in both Otolaryngology--Head and Neck Surgery and Neurology with the goal of jointly addressing the junction of inner ear and brain disorders. Her specific interests include vestibular migraine, benign paroxysmal positional vertigo, Ménière's disease and international neurology.

  • Gary K. Steinberg, MD, PhD

    Gary K. Steinberg, MD, PhD

    Bernard and Ronni Lacroute-William Randolph Hearst Professor in Neurosurgery and Neurosciences and Professor, by courtesy, of Neurology

    Current Research and Scholarly Interests Our laboratory investigates the pathophysiology and treatment of cerebral ischemia, and methods to restore neurologic function after stroke. Treatment strategies include brain hypothermia, stem cell transplantation and optogenetic stimulation. Our clinical research develops innovative surgical, endovascular and radiosurgical approaches for treating difficult intracranial aneurysms, complex vascular malformations and occlusive disease, including Moyamoya disease, as well as stem cell transplant.

  • Lawrence Steinman, MD

    Lawrence Steinman, MD

    George A. Zimmermann Professor and Professor of Pediatrics

    Current Research and Scholarly Interests Our laboratory is dedicated to understanding the pathogenesis of autoimmune diseases, particularly multiple sclerosis. We have developed several new therapies for autoimmunity, including some in Phase 2 clinical trials, as well as one approved drug, natalizumab. We have developed microarray technology for detecting autoantibodies to myelin proteins and lipids. We employ a diverse range of molecular and celluar approaches to trying to understand multiple sclerosis.

  • Thomas Sudhof

    Thomas Sudhof

    Avram Goldstein Professor in the School of Medicine and Professor, by courtesy, of Neurology and of Psychiatry and Behavioral Sciences

    Current Research and Scholarly Interests Information transfer at synapses mediates information processing in brain, and is impaired in many brain diseases. Thomas Südhof is interested in how synapses are formed, how presynaptic terminals release neurotransmitters at synapses, and how synapses become dysfunctional in diseases such as autism or Alzheimer's disease. To address these questions, Südhof's laboratory employs approaches ranging from biophysical studies to the electrophysiological and behavioral analyses of mutant mice.

Footer Links:

Stanford Medicine Resources: