School of Medicine


Showing 21-30 of 95 Results

  • Karlene Cimprich

    Karlene Cimprich

    Professor of Chemical and Systems Biology

    Current Research and Scholarly Interests Genomic instability contributes to many diseases, but it also underlies many natural processes. The Cimprich lab is focused on understanding how mammalian cells maintain genomic stability in the context of DNA replication stress and DNA damage. We are interested in the molecular mechanisms underlying the cellular response to replication stress and DNA damage as well as the links between DNA damage and replication stress to human disease.

  • Markus Covert

    Markus Covert

    Professor of Bioengineering and, by courtesy, of Chemical and Systems Biology

    Current Research and Scholarly Interests Our focus is on building computational models of complex biological processes, and using them to guide an experimental program. Such an approach leads to a relatively rapid identification and validation of previously unknown components and interactions. Biological systems of interest include metabolic, regulatory and signaling networks as well as cell-cell interactions. Current research involves the dynamic behavior of NF-kappaB, an important family of transcription factors.

  • Magdalena Crossley

    Magdalena Crossley

    Postdoctoral Research Fellow, Chemical and Systems Biology

    Current Research and Scholarly Interests Investigating the role of R-loops in genome stability and human disease

  • Justin Du Bois

    Justin Du Bois

    Henry Dreyfus Professor in Chemistry and Professor, by courtesy, of Chemical and Systems Biology

    Bio Research and Scholarship

    Research in the Du Bois laboratory spans reaction methods development, natural product synthesis, and chemical biology, and draws on expertise in molecular design, molecular recognition, and physical organic chemistry. An outstanding goal of our program has been to develop C?H bond functionalization processes as general methods for organic chemistry, and to demonstrate how such tools can impact the logic of chemical synthesis. A second area of interest focuses on the role of ion channels in electrical conduction and the specific involvement of channel subtypes in the sensation of pain. This work is enabled in part through the advent of small molecule modulators of channel function.

    The Du Bois group has described new tactics for the selective conversion of saturated C?H to C?N and C?O bonds. These methods have general utility in synthesis, making possible the single-step incorporation of nitrogen and oxygen functional groups and thus simplifying the process of assembling complex molecules. To date, lab members have employed these versatile oxidation technologies to prepare natural products that include manzacidin A and C, agelastatin, tetrodotoxin, and saxitoxin. Detailed mechanistic studies of metal-catalyzed C?H functionalization reactions are performed in parallel with process development and chemical synthesis. These efforts ultimately give way to advances in catalyst design. A long-standing goal of this program is to identify robust catalyst systems that afford absolute control of reaction selectivity.

    In a second program area, the Du Bois group is exploring voltage-gated ion channel structure and function using the tools of chemistry in combination with those of molecular biology, electrophysiology, microscopy and mass spectrometry. Much of this work has focused on studies of eukaryotic Na and Cl ion channels. The Du Bois lab is interested in understanding the biochemical mechanisms that underlie channel subtype regulation and how such processes may be altered following nerve injury. Small molecule toxins serve as lead compounds for the design of isoform-selective channel modulators, affinity reagents, and fluorescence imaging probes. Access to toxins and modified forms thereof (including saxitoxin, gonyautoxin, batrachotoxin, and veratridine) through de novo synthesis drives studies to elucidate toxin-receptor interactions and to develop new pharmacologic tools to study ion channel function in primary cells and murine pain models.

  • Julio Ferreira

    Julio Ferreira

    Visiting Associate Professor, Chemical and Systems Biology

    Bio PhD degree in Physiology (University of Sao Paulo) and postdoc in Biochemistry (Stanford University). The main focus of my research is to understand the role of mitochondria as intracellular node (not just the powerhouse of the cell) and their impact on life/death decision.

  • James Ferrell

    James Ferrell

    Professor of Chemical and Systems Biology and of Biochemistry

    Current Research and Scholarly Interests My lab has two main goals: to understand the regulation of mitosis and to understand the systems-level logic of simple signaling circuits. We often make use of Xenopus laevis oocytes, eggs, and cell-free extracts for both sorts of study. We also carry out single-cell fluorescence imaging studies on mammalian cell lines. Our experimental work is complemented by computational and theoretical studies aimed at understanding the design principles and recurring themes of regulatory circuits.

Footer Links:

Stanford Medicine Resources: