School of Medicine


Showing 1-20 of 25 Results

  • Corinne Beinat

    Corinne Beinat

    Instructor, Radiology - Rad/Molecular Imaging Program at Stanford

    Current Research and Scholarly Interests My current research areas of interest include developing new strategies for: 1) novel radioligand and radiotracer development for various targets involved in brain cancer, 2) preclinical animal models of glioblastoma, and 3) clinical translation of useful radiopharmaceuticals for early-detection of disease and monitoring therapy.

  • Zhen Cheng

    Zhen Cheng

    Associate Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly Interests To develop novel molecular imaging probes and techniques for non-invasively early detection of cancer using multimodality imaging technologies including PET, SPECT, MRI, optical imaging, etc.

  • Frederick T. Chin, Ph.D.

    Frederick T. Chin, Ph.D.

    Assistant Professor (Research) of Radiology (Molecular Imaging)

    Current Research and Scholarly Interests Our group's primary objectives are:

    1) Novel radioligand and radiotracer development.
    We will develop novel PET (Positron Emission Tomography) imaging agents with MIPS and Stanford faculty as well as other outside collaborations including academia and pharmaceutical industry. Although my personal research interests will be to discover and design of candidate probes that target molecular targets in the brain, our group focus will primarily be on cancer biology and gene therapy. In conjunction with our state-of-the-art imaging facility, promising candidates will be evaluated by PET-CT/MR imaging in small animals and primates. Successful radioligands and/or radiotracers will be extended towards future human clinical applications.

    2) Designing new radiolabeling techniques and methodologies.
    We will aim to design new radiolabeling techniques and methodologies that may have utility for future radiopharmaceutical development in our lab and the general radiochemistry community.

    3) Radiochemistry production of routine clinical tracers.
    Since we also have many interests with many Stanford faculty and outside collaborators, our efforts will also include the routine radiochemistry production of many existing radiotracers for human and non-human use. Our routine clinical tracers will be synthesized in custom-made or commercial synthetic modules (i.e. GE TRACERlab modules) housed in lead-shielded cells and be distributed manually or automatically (i.e. Comecer Dorothea) to our imagers.

  • Jennifer Dionne

    Jennifer Dionne

    Senior Associate Vice Provost for Research Platforms/Shared Facilities, Associate Professor of Materials Science and Engineering and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Bio Jennifer Dionne is the Senior Associate Vice Provost of Research Platforms/Shared Facilities and an Associate Professor of Materials Science and Engineering and of Radiology (by courtesy) at Stanford. Jen received her Ph.D. in Applied Physics at the California Institute of Technology, advised by Harry Atwater, and B.S. degrees in Physics and Systems & Electrical Engineering from Washington University in St. Louis. Prior to joining Stanford, she served as a postdoctoral researcher in Chemistry at Berkeley, advised by Paul Alivisatos. Jen's research develops nanophotonic methods to observe and control chemical and biological processes as they unfold with nanometer scale resolution, emphasizing critical challenges in global health and sustainability. Her work has been recognized with the Alan T. Waterman Award (2019), an NIH Director's New Innovator Award (2019), a Moore Inventor Fellowship (2017), the Materials Research Society Young Investigator Award (2017), Adolph Lomb Medal (2016), Sloan Foundation Fellowship (2015), and the Presidential Early Career Award for Scientists and Engineers (2014), and was featured on Oprah?s list of ?50 Things that will make you say ?Wow!'"

  • Gozde Durmus

    Gozde Durmus

    Assistant Professor (Research) of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly Interests Dr. Durmus' research focuses on applying micro/nano-technologies to investigate cellular heterogeneity for single-cell analysis and personalized medicine. At Stanford, she is developing platform technologies for sorting and monitoring cells at the single-cell resolution. This magnetic levitation-based technology is used for wide range of applications in medicine, such as, label-free detection of circulating tumor cells (CTCs) from blood; high-throughput drug screening; and rapid detection and monitoring of antibiotic resistance in real-time. During her PhD, she has engineered nanoparticles and nanostructured surfaces to decrease antibiotic-resistant infections.

  • Katherine Ferrara

    Katherine Ferrara

    Professor of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly Interests My focus is image-guided drug and gene delivery and I am engaged in the design of imaging devices, molecularly-targeted imaging probes and engineered delivery vehicles, drawing upon my education in biology and imaging physics and more than 20 years of experience with the synthesis and labeling of therapeutic particles. My laboratory has unique resources for and substantial experience in synthetic chemistry and ultrasound, CT, MR and PET imaging.

  • Edward Graves

    Edward Graves

    Associate Professor of Radiation Oncology (Radiation Physics) and, by courtesy, of Radiology (Molecular Imaging Program at Stanford)

    Current Research and Scholarly Interests Applications of molecular imaging in radiation therapy, development of hypoxia and radiosensitivity imaging techniques, small animal image-guided conformal radiotherapy, image processing and analysis.

  • Michelle L. James

    Michelle L. James

    Assistant Professor of Radiology (Molecular Imaging Program at Stanford) and of Neurology

    Current Research and Scholarly Interests The primary aim of my lab is to improve the diagnosis and treatment of brain diseases by developing translational molecular imaging agents for visualizing neuroimmune interactions underlying conditions such as Alzheimer?s disease, multiple sclerosis, and stroke.

  • Craig Levin

    Craig Levin

    Professor of Radiology (Molecular Imaging Program at Stanford/Nuclear Medicine) and, by courtesy, of Physics, of Electrical Engineering and of Bioengineering

    Current Research and Scholarly Interests Molecular Imaging Instrumentation
    Laboratory

    Our research interests involve the development of novel instrumentation and software algorithms for in vivo imaging of cellular and molecular signatures of disease in humans and small laboratory animal subjects.

  • Ying Lu

    Ying Lu

    Professor of Biomedical Data Science and, by courtesy, of Radiology (Molecular Imaging) and of Epidemiology and Population Health

    Current Research and Scholarly Interests Biostatistics, clinical trials, statistical evaluation of medical diagnostic tests, radiology, osteoporosis, meta-analysis, medical decisoin making

  • Chirag Patel, MD, PhD

    Chirag Patel, MD, PhD

    Clinical Assistant Professor, Neurology & Neurological Sciences

    Current Research and Scholarly Interests Neuro-oncology, Clinical Trials, Tumor Treating Fields (TTFields), Molecular/PET Imaging, Neuroimaging, Immunotherapy, Big Data Analysis

  • Jianghong Rao

    Jianghong Rao

    Professor of Radiology (Molecular Imaging Program at Stanford) and, by courtesy, of Chemistry

    Current Research and Scholarly Interests Probe chemistry and nanotechnology for molecular imaging and diagnostics

  • Eben Rosenthal

    Eben Rosenthal

    Professor of Otolaryngology - Head & Neck Surgery (OHNS) and of Radiology (Molecular Imaging Program at Stanford)

    Bio Eben Rosenthal is a surgeon-scientist and academic leader. He is currently serving as the John and Ann Doerr Medical Director of the Stanford Cancer Center, a position he has held since July 2015. He works collaboratively with the Stanford Cancer Institute and Stanford Health Care leaders to set the strategy for the clinical delivery of cancer care across Stanford Medicine and growing cancer networks.

    Before coming to Stanford, he learned his surgical skills in otolaryngology from the University of Michigan and traveled west for further training in facial plastic and reconstructive surgery at the Oregon Health and Science University. He joined the faculty at University of Alabama at Birmingham where he started as an Assistant Professor of Surgery within the Division of Otolaryngology. In 2012, Dr. Rosenthal became Division Director of Otolaryngology ? Head and Neck Surgery and the holder of the John S. Odess Endowed Chair at the University of Alabama at Birmingham. He moved to Stanford in 2015 to become the Ann and John Doerr Medical Director of the Stanford Cancer Center.

    Dr. Rosenthal is certified by the American Board of Otolaryngology and is a Diplomat of the American Board of Facial Plastic and Reconstructive Surgery. He specializes in the treatment and reconstruction of head and neck cancer patients. He has a strong interest in development of new strategies to surgically repair complex head and neck defects to improve functional and cosmetic outcomes.

    He has published over 160 peer-reviewed scientific manuscripts, authored many book chapters and published a book on optical imaging in cancer. He is on the editorial board of Head & Neck and The Laryngoscope and is also a charter member of the NIH Developmental Therapeutics Study Section. Dr. Rosenthal has performed preclinical and clinical research on the role of targeted therapies for use to treat cancer alone and in combination with conventional therapy. He has served as principal investigator on several early phase investigator-initiated and industry sponsored clinical trials in molecular oncology. He has received grant funding from the American Cancer Society, NIH/NCI and NIH/NIDCR to study the role of targeted therapy and novel imaging strategies in cancer.

    Dr. Rosenthal has conducted bench to bedside development of optical contrast agents to identify cancer in the operating room. He led a multidisciplinary team of scientists through successful IND application to allow testing of fluorescently labeled antibodies in the clinic and operating room. These early phase clinical trials have demonstrated that this technique can visualize microscopic cancer in the operating room and may significantly improve clinical outcomes.

Footer Links:

Stanford Medicine Resources: