School of Medicine


Showing 21-30 of 32 Results

  • Michael Frank

    Michael Frank

    David and Lucile Packard Foundation Professor in Human Biology and Associate Professor, by courtesy, of Linguistics

    Current Research and Scholarly Interests How do we learn to communicate using language? I study children's language learning and how it interacts with their developing understanding of the social world. I use behavioral experiments, computational tools, and novel measurement methods like large-scale web-based studies, eye-tracking, and head-mounted cameras.

  • Jennifer Frankovich

    Jennifer Frankovich

    Clinical Associate Professor, Pediatrics - Rheumatology

    Current Research and Scholarly Interests My primary interest and role at Stanford is to evaluate and treat children with both systemic and organ specific autoimmune disease. In October of 2012, we started a multidisciplinary clinic dedicated to treating patients with PANS (Pediatric Acute-onset Neuropsychiatric Syndromes). I am currently the clinical and research director for the PANS program.

  • Hunter Fraser

    Hunter Fraser

    Associate Professor of Biology

    Current Research and Scholarly Interests We study the evolution of complex traits by developing new experimental and computational methods.

    Our work brings together quantitative genetics, genomics, epigenetics, and evolutionary biology to achieve a deeper understanding of how genetic variation shapes the phenotypic diversity of life. Our main focus is on the evolution of gene expression, which is the primary fuel for natural selection. Our long-term goal is to be able to introduce complex traits into new species via genome editing.

  • Michael Fredericson, MD

    Michael Fredericson, MD

    Professor of Orthopaedic Surgery at the Stanford University Medical Center

    Current Research and Scholarly Interests My research focuses on the etiology, prevention, and treatment of overuse sports injuries in athletes and lifestyle medicine practices for improved health and longevity.

  • Richard Frock

    Richard Frock

    Assistant Professor of Radiation Oncology (Radiation and Cancer Biology)

    Current Research and Scholarly Interests Mechanisms of DNA double-strand break repair and chromosomal translocations

  • Adam Frymoyer

    Adam Frymoyer

    Clinical Associate Professor, Pediatrics - Neonatal and Developmental Medicine

    Current Research and Scholarly Interests My research interests focus on understanding the clinical pharmacokinetics (PK) and pharmacodynamics (PD) of medicines used in complex pediatric populations. This includes identifying sources of variation in drug response through the application of population PK-PD modeling and simulation approaches. The goal is to ultimately apply this quantitative understanding to guide therapeutic decision-making in infants and children.

  • Janene Fuerch

    Janene Fuerch

    Clinical Assistant Professor, Pediatrics - Neonatal and Developmental Medicine

    Bio Janene H. Fuerch, MD is a Clinical Assistant Professor of Neonatology at Stanford University Medical Center, as well as an innovator, educator, researcher and physician entrepreneur. She has an undergraduate degree in Neuroscience from Brown University and a medical degree from the Jacobs School of Medicine at SUNY Buffalo. At Stanford University she completed a pediatrics residency, neonatal-perinatal medicine fellowship and the Byers Center for Biodesign Innovation Fellowship.

    She is the Assistant Director of the Stanford Biodesign Faculty Innovation Fellowship, Assistant Director for the UCSF-Stanford Pediatric Device Consortium funded by the FDA and core faculty at the Center for Pediatric and Perinatal Education or CAPE (a specialized simulation center at Stanford). Janene conducts simulation and debriefing training programs for international audiences and has developed the first on-line debriefing curriculum. She is also the co-founder of Emme - a women?s reproductive health company. Her research focuses on the following areas: utilization of a simulated environment to develop and test neonatal medical devices, neonatal resuscitation, human factors and debriefing. Janene is passionate about improving the health of women and children through medical device innovation and research.

  • Gerald Fuller

    Gerald Fuller

    Fletcher Jones II Professor in the School of Engineering

    Bio The processing of complex liquids (polymers, suspensions, emulsions, biological fluids) alters their microstructure through orientation and deformation of their constitutive elements. In the case of polymeric liquids, it is of interest to obtain in situ measurements of segmental orientation and optical methods have proven to be an excellent means of acquiring this information. Research in our laboratory has resulted in a number of techniques in optical rheometry such as high-speed polarimetry (birefringence and dichroism) and various microscopy methods (fluorescence, phase contrast, and atomic force microscopy).

    The microstructure of polymeric and other complex materials also cause them to have interesting physical properties and respond to different flow conditions in unusual manners. In our laboratory, we are equipped with instruments that are able to characterize these materials such as shear rheometer, capillary break up extensional rheometer, and 2D extensional rheometer. Then, the response of these materials to different flow conditions can be visualized and analyzed in detail using high speed imaging devices at up to 2,000 frames per second.

    There are numerous processes encountered in nature and industry where the deformation of fluid-fluid interfaces is of central importance. Examples from nature include deformation of the red blood cell in small capillaries, cell division and structure and composition of the tear film. Industrial applications include the processing of emulsions and foams, and the atomization of droplets in ink-jet printing. In our laboratory, fundamental research is in progress to understand the orientation and deformation of monolayers at the molecular level. These experiments employ state of the art optical methods such as polarization modulated dichroism, fluorescence microscopy, and Brewster angle microscopy to obtain in situ measurements of polymer films and small molecule amphiphile monolayers subject to flow. Langmuir troughs are used as the experimental platform so that the thermodynamic state of the monolayers can be systematically controlled. For the first time, well characterized, homogeneous surface flows have been developed, and real time measurements of molecular and microdomain orientation have been obtained. These microstructural experiments are complemented by measurements of the macroscopic, mechanical properties of the films.

  • Margaret T. Fuller

    Margaret T. Fuller

    Reed-Hodgson Professor in Human Biology and Professor of Genetics and of Obstetrics/Gynecology (Reproductive and Stem Cell Biology)

    Current Research and Scholarly Interests Regulation of self-renewal, proliferation and differentiation in adult stem cell lineages. Developmental tumor suppressor mechanisms and regulation of the switch from proliferation to differentiation. Cell type specific transcription machinery and regulation of cell differentiation. Developmental regulation of cell cycle progression during male meiosis.

Footer Links:

Stanford Medicine Resources: