Current Research and Scholarly Interests
Ion transport across the hydrophobic barrier of the cell membrane is a primary challenge faced by all cells. Such transport sets up and exploits ion gradients, thus providing the basic energy and signaling events that are the foundation of life. My laboratory studies the molecular mechanisms of ion channels and transporters, the proteins that catalyze this transport. A major research focus is on the chloride-selective CLC family, which contains both types ion-transport protein. CLC proteins are expressed ubiquitously and perform diverse physiological functions in cardiovascular, neuronal, muscular, and epithelial function. We use a combination of biophysical methods to investigate membrane-protein structure and dynamics together with electrophysiological analyses to directly measure function. We additionally apply our expertise on ion-transport mechanisms to interdisciplinary collaborations to create novel chemical tools, to develop CLC-targeted therapies, and to understand the mechanism by which ultrasound modulates ion-transport to effect neuromodulation.