Academic Appointments


Journal Articles

  • Phagocytic properties of microglia in vitro: Implications for a role in multiple sclerosis and EAE MICROSCOPY RESEARCH AND TECHNIQUE Smith, M. E. 2001; 54 (2): 81-94


    The microglial cell, after many years of neglect, has become recognized as the sole representative cell of the immune system that resides in the normal central nervous system. While normally dormant, microglia can be activated by secretory substances or signals associated with disease or injury, and becomes a phagocytic cell, which also produces its own injurious molecules. In the activating process, its morphology is changed from a resting process-bearing cell, into a rounded amoebic form, and displays new or increased amounts of functional markers, such as receptors and Class I and Class II MHC molecules. Microglia prepared from newborn mice or rats for tissue culture are already activated, and can be used for studies of their phagocytic properties. Although they can phagocytize foreign substances, their uptake and metabolism of myelin are emphasized here, in keeping with their role in demyelinating diseases. A number of receptors have been implicated and appear to be important in the attachment to, and ingestion of, myelin particles in vitro, including the Fc, complement, macrophage scavenger, and the Galectin-3/MAC-2 receptors, although the alpha2-macroglobulin/low-density lipoprotein receptor and mannose receptors have also been suggested as participants in myelin phagocytosis. Certain cytokines and adhesion molecules also regulate the phagocytic activity of microglia. Comparative in vitro studies of phagocytosis by peritoneal macrophages and microglia have shown that the two kinds of cells respond differently to regulatory molecules, and it is concluded that they have different innate properties. The role of microglia in the demyelinative diseases experimental autoimmune encephalomyelitis and multiple sclerosis is emphasized here, and the possible means of intervention in the process leading to myelin destruction is discussed. Published 2001 Wiley-Liss, Inc.

    View details for Web of Science ID 000169953500003

    View details for PubMedID 11455615

  • Was the ASN a myelin society? NEUROCHEMICAL RESEARCH Smith, M. E. 2000; 25 (9-10): 1453-1456

    View details for Web of Science ID 000090143900028

    View details for PubMedID 11059816

  • Astrocytes modulate macrophage phagocytosis of myelin in vitro JOURNAL OF NEUROIMMUNOLOGY Smith, M. E., Hoerner, M. T. 2000; 102 (2): 154-162


    Previous work from this laboratory has shown that both macrophages and microglia phagocytize relatively little myelin in vitro under basal conditions. In an effort to better simulate the conditions within the central nervous system (CNS), we have co-cultured these cells with astrocytes, the most numerous of the neural cells in the CNS, and have compared myelin phagocytosis in the co-cultures with that in cells cultured alone. Both macrophages and microglia in company with astrocytes phagocytized about three times as much myelin as controls, as measured by the formation of cholesterol ester, while astrocytes alone showed little evidence of myelin phagocytosis. Astrocyte-conditioned medium increased phagocytic activity in macrophages by 2.3-fold, and by 3.5-fold in microglia. A number of adhesion molecules and extracellular matrices were tested for their effects on myelin phagocytosis. Matrigel was most effective in activating the macrophages, and in the presence of conditioned medium, stimulated these cells to phagocytize as much myelin as when co-cultured with astrocytes. On the other hand, Matrigel inhibited myelin phagocytosis in microglia. These results indicate that activation of macrophages by astrocytes may be due to an adhesion component, as well as to soluble factors secreted by the astrocytes. While microglia were also stimulated by conditioned medium, adhesion to astrocytes or Matrigel induced a downregulation in phagocytic activity.

    View details for Web of Science ID 000084638900006

    View details for PubMedID 10636484

  • Inhibition of autoreactive antibody effects with antibody feedings: a pilot study JOURNAL OF NEUROIMMUNOLOGY Hofmann, W. W., Smith, M. E. 1999; 96 (1): 1-8


    This study seeks to determine if tolerance to autoreactive antibody can be achieved by exposing gut-associated lymphocytic tissue (GALT) to the protein. The method involved immunizing rats with AchR after feeding anti-AchR purified from myasthenic plasma or non-specific, pooled human immunoglobulins. Both feedings improved the neuromuscular block of EAMG, the commercial preparation requiring a tenfold increase in protein concentration. Despite its protective effect, antibody feeding was associated with late levels of serum anti-AchR considerably above those in immunized controls. The hypothesis presented is that the tolerance results from enhanced anti-idiotype production.

    View details for Web of Science ID 000079707500001

    View details for PubMedID 10227419

  • Phagocytosis of myelin in demyelinative disease: A review NEUROCHEMICAL RESEARCH Smith, M. E. 1999; 24 (2): 261-268


    In the cell-mediated demyelinating diseases such as experimental allergic encephalomyelitis and multiple sclerosis, as well as their peripheral nerve counterparts, the phagocytic cells are the agent of myelin destruction. Both resident microglia and peripheral macrophages invading the nervous system have been shown to phagocytize myelin, although microglia appear to be more active, especially at early stages of disease. Several different receptors on these cells have been implicated as myelin receptors, with the Fc- and complement receptors receiving the most attention. Other receptors, especially the macrophage scavenger receptor with its broad specificity deserves further exploration, especially in view of its affinity for phosphatidylserine, which becomes externalized with membrane disruption. Evidence is shown for cytokine regulation of phagocytic activity in both macrophages and microglia. Further investigation of the pathways of cytokine action on myelin phagocytosis through signal transduction molecules will be important for a further understanding of the events leading to myelin destruction in demyelinating diseases.

    View details for Web of Science ID 000078232300011

    View details for PubMedID 9972873

  • Macrophage and microglial responses to cytokines in vitro: Phagocytic activity, proteolytic enzyme release, and free radical production JOURNAL OF NEUROSCIENCE RESEARCH Smith, M. E., van der Maesen, K., Somera, F. P. 1998; 54 (1): 68-78


    Certain cytokines are believed to play a key role in the development of autoimmune demyelinating diseases. Little is known, however, about the effects of these cytokines in the regulation of the key event in myelin destruction, the phagocytosis of myelin by phagocytic cells. We investigated the effects of certain cytokines and growth factors on cultured peritoneal macrophages and microglia in respect to their various functions, phagocytosis, secreted proteolytic activity, and oxidative activity. Interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), and lipopolysaccharide (LPS), all proinflammatory factors, actually decreased (IFN-gamma and LPS), or had no effect (TNF-alpha) on myelin phagocytosis by macrophages, but substantially increased phagocytic activity by microglia. Surprisingly, interleukins 4 and 10 (IL-4 and IL-10), considered to be downregulating cytokines, increased phagocytic activity by macrophages, while with microglia, IL-4 had no effect, but IL-10 almost doubled myelin phagocytosis. Transforming growth factor-beta (TGF-beta) had no significant effect on either cell. These cytokines did not affect proteolytic secretion in microglia, while IFN-gamma and LPS induced a doubling of the secreted proteases. This proteolytic activity was almost completely suppressed by calpain inhibitors, although some gelatinase appeared to be present. Microglia exerted much more oxidative activity on the membranes than macrophages, and granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin 1beta (IL-1beta) significantly increased microglial oxidative activity. The pattern of responses of macrophages and microglia to the cytokine types indicate that in cytokine-driven autoimmune demyelinating disease, microglia may be the more aggressive cell in causing tissue injury by phagocytosis and oxidative injury, while infiltrating macrophages may produce most of the proteolytic activity thought to contribute to myelin destruction.

    View details for Web of Science ID 000076152400008

    View details for PubMedID 9778151

  • Effects of phorbol myristate acetate (PMA) on functions of macrophages and microglia in vitro NEUROCHEMICAL RESEARCH Smith, M. E., van der Maesen, K., Somera, F. P., Sobel, R. A. 1998; 23 (3): 427-434


    Peripheral macrophages infiltrating the central nervous system and resident microglia phagocytize myelin in cell-mediated demyelinating diseases, including experimental autoimmune encephalomyelitis and multiple sclerosis. A cascade of cytokines is believed to modulate the immunological sequence of events occurring in these conditions, and several of these mediate their effects through the protein kinase C pathway. Therefore, we compared the effects of phorbol myristate acetate (PMA), an activator of protein kinase C, on various functions of cultured macrophages and microglia. PMA at moderate concentrations induced apoptosis in macrophages, and this process appeared to be increased in the presence of myelin. In contrast, microglia were activated by PMA, and greatly increased their phagocytosis of myelin. Control macrophages released a considerable amount of proteolytic activity into the medium, as measured by the breakdown of myelin basic protein, and in the process of undergoing apoptosis from PMA-treatment, even higher amounts were released. The enzyme activity in control macrophage medium was inhibited mainly by PMSF and calpain inhibitors, while that from PMA-treated macrophages was inhibited by calpain inhibitors only. An ICE inhibitor was ineffective in inhibiting activity in medium from PMA-treated cells undergoing apoptosis. Medium from microglia contained very little proteolytic activity, and this was not increased by PMA. Cultured macrophages showed little evidence of oxygen free radical release as measured by the TBARS procedure, and PMA had no effect. Microglia, on the other hand, produced higher levels of reactive oxygen species, with a further increase of 18% by PMA. Thus major functions of these phagocytic cells appear to be modulated by the protein kinase C pathway, although the two cell types show very different responses to an activator of this signal.

    View details for Web of Science ID 000071831700023

    View details for PubMedID 9482257



    Experimental allergic encephalomyelitis is characterized by invasion of lymphocytes and macrophages into the central nervous system resulting in inflammation, edema, and demyelination. Sera from Lewis rats from 7-95 days after immunization with purified guinea pig CNS myelin were examined with respect to their ability to opsonize myelin. This was correlated with the appearance of antibody components and the relative amounts of antibody to myelin basic protein (MBP) and proteolipid protein (PLP). Sera from rats 10-95 days after immunization preincubated with purified myelin induced phagocytosis of myelin by cultured macrophages with the resulting production of cholesterol ester. This opsonization activity as measured by the percentage of cholesterol esterified reached a peak at 26-27 days after immunization but remained significantly elevated up to 95 days post-immunization compared to the activity of serum from the Freund's adjuvant-injected controls. Immunoblots of the sera revealed a gradual increase in antibody activity against myelin components. ELISA assays for MBP and PLP antibody showed a similar pattern. Antibody to galactocerebroside (GC) was not detected by immunostains nor by the ELISA assay. Areas of demyelination were observed histologically by luxol-fast blue stained spinal cords up to 60 days post-immunization. These results indicate that antibodies to myelin protein when given access to myelin through or within the blood brain barrier could initiate or enhance the phagocytic response by peripheral or resident macrophages.

    View details for Web of Science ID A1991GX78600003

    View details for PubMedID 1787538



    Experimental allergic encephalomyelitis (EAE) was induced in adult Lewis rats with purified guinea pig CNS myelin and Freund's adjuvant. As soon as the very earliest clinical signs appeared the animals were perfused with fixatives and the spinal cord analyzed by electron microscopy, silver methods, and immunocytochemistry. Our findings suggest that in the early stages of EAE a sequence of events can be traced, although these events frequently overlap. The earliest morphological change appears to be astrocytic edema in both the cell body and processes. Increased amounts of glycogen particles and dispersion of glial filaments are prominent. These changes seem to occur just prior to the time when inflammatory cells begin to penetrate the capillary walls. Invasion of the neuropil mainly by macrophages and lymphocytes closely follows. Both macrophages and microglia seem to participate in phagocytosis of oligodendrocytes and myelin. Demyelination, however, is not a prominent feature at this early stage.

    View details for Web of Science ID A1990DN75300001

    View details for PubMedID 2144503



    Acute experimental allergic encephalomyelitis (EAE) in the Lewis rat is a cell-mediated autoimmune disease of central nervous system myelin. The lesion has been characterized by breakdown of the blood-brain barrier, edema, and periventricular infiltration of macrophages and lymphocytes. At the early stage of the disease, the astrocytes show a marked increase in immunostaining for glial fibrillary acidic protein (GFAP). A corresponding increase in GFAP content, however, cannot be demonstrated. Electron microscopic examination of the early lesion shows a typical reactive astrocytic response expressed by an enlarged watery cytoplasm, particularly at the level of the processes surrounding neurons and blood vessels and in the neuropil itself. The astroglial processes contain numerous glycogen particles (aggregates and single particles). Glial filaments are also conspicuous and are arranged in small bundles or loose thin filaments adjacent to the bundles. The glial filaments that normally appear as tight bundles have expanded and appear less dense. We suggest that the increase in GFAP immunostaining of the astrocytes in the early lesion is due in part to edema, which causes dissociation of the filaments and thereby exposes more antigenic sites to the antibodies.

    View details for Web of Science ID A1989AU82400003

    View details for PubMedID 2530171

Conference Proceedings

Stanford Medicine Resources: