Bio

Stanford Advisors


Research & Scholarship

Lab Affiliations


Publications

Journal Articles


  • Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications ACTA BIOMATERIALIA Sun, W., Araci, Z., Inayathullah, M., Manickam, S., Zhang, X., Bruce, M. A., Marinkovich, M. P., Lane, A. T., Milla, C., Rajadas, J., Butte, M. J. 2013; 9 (8): 7767-7774

    Abstract

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy.

    View details for DOI 10.1016/j.actbio.2013.04.045

    View details for Web of Science ID 000322207700017

    View details for PubMedID 23648574

  • Real-time GPU-based 3D Deconvolution OPTICS EXPRESS Bruce, M. A., Butte, M. J. 2013; 21 (4): 4766-4773

    Abstract

    Confocal microscopy is an oft-used technique in biology. Deconvolution of 3D images reduces blurring from out-of-focus light and enables quantitative analyses, but existing software for deconvolution is slow and expensive. We present a parallelized software method that runs within ImageJ and deconvolves 3D images ~100 times faster than conventional software (few seconds per image) by running on a low-cost graphics processor board (GPU). We demonstrate the utility of this software by analyzing microclusters of T cell receptors in the immunological synapse of a CD4 + T cell and dendritic cell. This software provides a low-cost and rapid way to improve the accuracy of 3D microscopic images obtained by any method.

    View details for Web of Science ID 000315992600083

    View details for PubMedID 23482010

  • Atomic Force Mechanobiology of Pluripotent Stem Cell-Derived Cardiomyocytes PLOS ONE Liu, J., Sun, N., Bruce, M. A., Wu, J. C., Butte, M. J. 2012; 7 (5)

    Abstract

    We describe a method using atomic force microscopy (AFM) to quantify the mechanobiological properties of pluripotent, stem cell-derived cardiomyocytes, including contraction force, rate, duration, and cellular elasticity. We measured beats from cardiomyocytes derived from induced pluripotent stem cells of healthy subjects and those with dilated cardiomyopathy, and from embryonic stem cell lines. We found that our AFM method could quantitate beat forces of single cells and clusters of cardiomyocytes. We demonstrate the dose-responsive, inotropic effect of norepinephrine and beta-adrenergic blockade of metoprolol. Cardiomyocytes derived from subjects with dilated cardiomyopathy showed decreased force and decreased cellular elasticity compared to controls. This AFM-based method can serve as a screening tool for the development of cardiac-active pharmacological agents, or as a platform for studying cardiomyocyte biology.

    View details for DOI 10.1371/journal.pone.0037559

    View details for Web of Science ID 000305343500135

    View details for PubMedID 22624048

Stanford Medicine Resources: