Bio

Bio


Over the past ten years my research has focused on the field of epigenetics, which investigates how environmental factors can affect gene activity thereby impacting our health and predisposition to diseases. Unlike genetic factors, epigenetic modifications are flexible and can store cell memories of life exposures such as diet, stress or environmental toxins. As such, they hold great potential in personalized health as biomarkers for exposure-driven chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer.

I am currently leading the epigenetic analysis of the largest study ever undertaken in personalized nutrition on low carb vs. low fat diets – the DIETFITS study by Prof Christopher Gardner. My primary goal is to understand how weight-loss affects gene activity through epigenetic modifications, and whether we can use these modifications to predict diet response for personalized weight-loss strategies.

I also teach Nutritional Genomics at Stanford Continuing Studies, Stanford Sport Medicine and at the Stanford Center for Professional Development. An award-winning science communicator, I use creative forms of communication such as digital drawings to explain complex topics from the world of epigenetics and science. Finally, I serve as an advisor for personal genomics companies, self-tracking technology businesses, and companies interested in investing in precision health research.

Supervisors


Honors & Awards


  • Marie Skłodowska-Curie Action Global Fellowship, European Union (2016-1019)
  • People’s Choice Award, Europe PubMed Central (2014)
  • Hertha Firnberg Fellowship, Austrian Science Fund (FWF) (2011-2014)
  • Doctoral Thesis Award, Schaumayer Foundation (2010)
  • Winner, Famelab Scientific Communication Competition (2009)
  • FP6 Marie Curie Actions Early Stage Training, European Union (2007-2010)

Boards, Advisory Committees, Professional Organizations


  • Editorial Board Member, Austin Biomolecules (2017 - Present)
  • Advisor, Vie (https://vie.health/) (2017 - Present)
  • Director of Epigenetics, Apeiron Medicals (2017 - Present)
  • Advisory Board Member, NaturalisNordica (2016 - Present)

Professional Education


  • Master of Science, Universita Degli Studi Di Napoli (2005)
  • Doctor of Philosophy, Universitat Wien (2010)

Service, Volunteer and Community Work


  • HumBio Movies: Epigenomics and DIETFITS, Stanford University

    https://www.youtube.com/watch?v=yRubf_mQFLc&t=333s
    https://www.youtube.com/watch?v=9fNj74Rn370

    Location

    Stanford

  • Science podcast Goggles Optional, Stanford University

    https://www.youtube.com/playlist?list=PLU7a7O4lr4QBxglXYaxhyxGJNyRM-uIiZ

    Location

    Stanford

  • Soul Food Salon Seminar Series

    https://vimeo.com/168283136

    Location

    Woodside, CA

  • Blackboard-style Epigenetics

    Blackboard-style lecture videos
    https://www.youtube.com/playlist?list=PLU7a7O4lr4QCnIMMyBxVT0aFsh812AzGQ

    Location

    Stanford

  • Draw it!, Stanford University

    K-12 Biology Videos
    https://stanfordbioscience2016.wordpress.com/draw-it-2/

    Location

    Stanford

Research & Scholarship

Projects


  • Epigenetic Biomarkers for Precision Medicine in Obesity, Stanford University

    Location

    Stanford

    Collaborators

  • Sex/Gender Differences in Diet Adherence and Weight Loss, Stanford University

    Location

    Stanford

    Collaborators

    • Christopher Gardner, Rehnborg Farquhar Professor, Stanford University
    • Marcia Stefanick, Professor (Research) of Medicine (Stanford Prevention Research Center), of Obstetrics and Gynecology and, by courtesy, of Health Research and Policy (Epidemiology), Stanford University
  • Nutrigenetic Analysis in the iPOP Study, Stanford University

    Location

    Stanford University

    Collaborators

    • Brittany Lee, Postdoctoral Research Fellow, Genetics, School of Medicine
    • Xiao Li, Postdoctoral Research Fellow, Genetics, School of Medicine
    • Dalia Perelman, Med/Stanford Prevention Rsch, Medicine - Med/Stanford Prevention Research Center, Medicine - Med/Stanford Prevention Research Center

Teaching

Graduate and Fellowship Programs


  • Community Health and Prevention Research (Masters Program)

Professional

Work Experience


  • Research Project Leader, Max F. Perutz Laboratories (MFPL) (2011 - 2014)

    Location

    Vienna, Austria

  • Visiting Scholar, University of Oxford, UK (2013 - 2014)

    Location

    Oxford

  • Visiting Scholar, University of Southern California (2011 - 2012)

    Location

    los angeles

Publications

All Publications


  • A systematic review of studies of DNA methylation in the context of a weight loss intervention EPIGENOMICS Aronica, L., Levine, A. J., Brennan, K., Mi, J., Gardner, C., Haile, R. W., Hitchins, M. P. 2017; 9 (5): 769-787

    Abstract

    Obesity results from the interaction of genetic and environmental factors, which may involve epigenetic mechanisms such as DNA methylation (DNAm).We have followed the PRISMA protocol to select studies that analyzed DNAm at baseline and end point of a weight loss intervention using either candidate-locus or genome-wide approaches.Six genes displayed weight loss associated DNAm across four out of nine genome-wide studies. Weight loss is associated with significant but small changes in DNAm across the genome, and weight loss outcome is associated with individual differences in baseline DNAm at several genomic locations.The identified weight loss associated DNAm markers, especially those showing reproducibility across different studies, warrant validation by further studies with robust design and adequate power.

    View details for DOI 10.2217/epi-2016-0182

    View details for Web of Science ID 000401642200014

    View details for PubMedID 28517981

  • A systematic review of studies of DNA methylation in the context of a weight loss intervention Epigenomics Aronica, L., et al 2017

    View details for DOI 10.2217/epi-2016-0182

  • The spliceosome-associated protein Nrl1 suppresses homologous recombination-dependent R-loop formation in fission yeast. Nucleic acids research Aronica, L., Kasparek, T., Ruchman, D., Marquez, Y., Cipak, L., Cipakova, I., Anrather, D., Mikolaskova, B., Radtke, M., Sarkar, S., Pai, C., Blaikley, E., Walker, C., Shen, K., Schroeder, R., Barta, A., Forsburg, S. L., Humphrey, T. C. 2016; 44 (4): 1703-1717

    Abstract

    The formation of RNA-DNA hybrids, referred to as R-loops, can promote genome instability and cancer development. Yet the mechanisms by which R-loops compromise genome instability are poorly understood. Here, we establish roles for the evolutionarily conserved Nrl1 protein in pre-mRNA splicing regulation, R-loop suppression and in maintaining genome stability. nrl1Δ mutants exhibit endogenous DNA damage, are sensitive to exogenous DNA damage, and have defects in homologous recombination (HR) repair. Concomitantly, nrl1Δ cells display significant changes in gene expression, similar to those induced by DNA damage in wild-type cells. Further, we find that nrl1Δ cells accumulate high levels of R-loops, which co-localize with HR repair factors and require Rad51 and Rad52 for their formation. Together, our findings support a model in which R-loop accumulation and subsequent DNA damage sequesters HR factors, thereby compromising HR repair at endogenously or exogenously induced DNA damage sites, leading to genome instability.

    View details for DOI 10.1093/nar/gkv1473

    View details for PubMedID 26682798

  • A Tetrahymena Hsp90 co-chaperone promotes siRNA loading by ATP-dependent and ATP-independent mechanisms EMBO JOURNAL Woehrer, S. L., Aronica, L., Suhren, J. H., Busch, C. J., Noto, T., Mochizuki, K. 2015; 34 (4): 559-577

    Abstract

    The loading of small interfering RNAs (siRNAs) and microRNAs into Argonaute proteins is enhanced by Hsp90 and ATP in diverse eukaryotes. However, whether this loading also occurs independently of Hsp90 and ATP remains unclear. We show that the Tetrahymena Hsp90 co-chaperone Coi12p promotes siRNA loading into the Argonaute protein Twi1p in both ATP-dependent and ATP-independent manners in vitro. The ATP-dependent activity requires Hsp90 and the tetratricopeptide repeat (TPR) domain of Coi12p, whereas these factors are dispensable for the ATP-independent activity. Both activities facilitate siRNA loading by counteracting the Twi1p-binding protein Giw1p, which is important to specifically sort the 26- to 32-nt siRNAs to Twi1p. Although Coi12p lacking its TPR domain does not bind to Hsp90, it can partially restore the siRNA loading and DNA elimination defects of COI12 knockout cells, suggesting that Hsp90- and ATP-independent loading of siRNA occurs in vivo and plays a physiological role in Tetrahymena.

    View details for DOI 10.15252/embj.201490062

    View details for Web of Science ID 000349695100012

    View details for PubMedID 25588944

  • How Healthy Eating Could Starve Out Cancer Aronica, L. Europe PubMed Central. 2014

    Abstract

    Europe PubMed Central People's Choice Award

  • The Tetrahymena Argonaute-Binding Protein Giw1p Directs a Mature Argonaute-siRNA Complex to the Nucleus CELL Noto, T., Kurth, H. M., Kataoka, K., Aronica, L., DeSouza, L. V., Siu, K. W., Pearlman, R. E., Gorovsky, M. A., Mochizuki, K. 2010; 140 (5): 692-703

    Abstract

    Emerging evidence suggests that RNA interference (RNAi)-related processes act both in the cytoplasm and in the nucleus. However, the process by which the RNAi machinery is transported into the nucleus remains poorly understood. The Tetrahymena Argonaute protein Twi1p localizes to the nucleus and is crucial for small RNA-directed programmed DNA elimination. In this study, we identify Giw1p, which binds to Twi1p and is required for its nuclear localization. Furthermore, the endoribonuclease (Slicer) activity of Twi1p plays a vital role in the removal of one of the two strands of Twi1p-associated small interfering RNAs (siRNAs), leading to a functionally mature Twi1p-siRNA complex. Slicer activity is also shown to be required for nuclear localization of Twi1p and for its association with Giw1p. These results suggest that Giw1p senses the state of Twi1p-associated siRNAs and selectively transports the mature Twi1p-siRNA complex into the nucleus.

    View details for DOI 10.1016/j.cell.2010.02.010

    View details for Web of Science ID 000275197400018

    View details for PubMedID 20211138

  • Study of an RNA helicase implicates small RNA-noncoding RNA interactions in programmed DNA elimination in Tetrahymena GENES & DEVELOPMENT Aronica, L., Bednenko, J., Noto, T., DeSouza, L. V., Siu, K. W., Loidl, J., Pearlman, R. E., Gorovsky, M. A., Mochizuki, K. 2008; 22 (16): 2228-2241

    Abstract

    Tetrahymena eliminates micronuclear-limited sequences from the developing macronucleus during sexual reproduction. Homology between the sequences to be eliminated and approximately 28-nucleotide small RNAs (scnRNAs) associated with an Argonaute family protein Twi1p likely underlies this elimination process. However, the mechanism by which Twi1p-scnRNA complexes identify micronuclear-limited sequences is not well understood. We show that a Twi1p-associated putative RNA helicase Ema1p is required for the interaction between Twi1p and chromatin. This requirement explains the phenotypes of EMA1 KO strains, including loss of selective down-regulation of scnRNAs homologous to macronuclear-destined sequences, loss of H3K9 and K27 methylation in the developing new macronucleus, and failure to eliminate DNA. We further demonstrate that Twi1p interacts with noncoding transcripts derived from parental and developing macronuclei and this interaction is greatly reduced in the absence of Ema1p. We propose that Ema1p functions in DNA elimination by stimulating base-pairing interactions between scnRNAs and noncoding transcripts in both parental and developing new macronuclei.

    View details for DOI 10.1101/gad.481908

    View details for Web of Science ID 000258486800009

    View details for PubMedID 18708581