Bio

Professional Education


  • Doctorate of Philosophy, Stanford University, Electrical Engineering (2013)
  • Master of Engineering, Massachusetts Institute of Technology, Electrical Eng & Comp Sci (2007)
  • Bachelor of Science, Massachusetts Institute of Technology, Electrical Eng & Comp Sci (2006)

Research & Scholarship

Current Research and Scholarly Interests


MRI; data acquisition & image reconstruction; motion correction; fast imaging

Publications

Journal Articles


  • Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. Journal of magnetic resonance imaging : JMRI Zhang, T., Cheng, J. Y., Potnick, A. G., Barth, R. A., Alley, M. T., Uecker, M., Lustig, M., Pauly, J. M., Vasanawala, S. S. 2013

    Abstract

    To develop a method for fast pediatric 3D free-breathing abdominal dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) and investigate its clinical feasibility.A combined locally low rank parallel imaging method with soft gating is proposed for free-breathing DCE MRI acquisition. With Institutional Review Board (IRB) approval and informed consent/assent, 23 consecutive pediatric patients were recruited for this study. Free-breathing DCE MRI with ∼1 mm(3) spatial resolution and a 6.5-sec frame rate was acquired on a 3T scanner. Undersampled data were reconstructed with a compressed sensing method without motion correction (FB-CS) and the proposed method (FB-LR). A follow-up respiratory-triggered acquisition (RT-CS) was performed as a reference standard. The reconstructed images were evaluated independently by two radiologists. Wilcoxon tests were performed to test the hypothesis that there was no significant difference between different reconstructions. Quantitative evaluation of contrast dynamics was also performed.The mean score of overall image quality of FB-LR was 4.0 on a 5-point scale, significantly better (P < 0.05) than FB-CS reconstruction (mean score 2.9), and similar to RT-CS (mean score 4.1). FB-LR also matched the temporal fidelity of contrast dynamics with a root mean square error less than 5%.Fast 3D free-breathing DCE MRI with high scan efficiency and image quality similar to respiratory-triggered acquisition is feasible in a pediatric clinical setting.J. Magn. Reson. Imaging 2013. © 2013 Wiley Periodicals, Inc.

    View details for DOI 10.1002/jmri.24551

    View details for PubMedID 24375859

  • Nonrigid autofocus motion correction for coronary MR angiography with a 3D cones trajectory. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine Ingle, R. R., Wu, H. H., Addy, N. O., Cheng, J. Y., Yang, P. C., Hu, B. S., Nishimura, D. G. 2013

    Abstract

    To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography acquisitions using an image-navigated 3D cones sequence.2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing coronary magnetic resonance angiography scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies.Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies.The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.

    View details for DOI 10.1002/mrm.24924

    View details for PubMedID 24006292

  • Nonrigid motion correction in 3D using autofocusing withlocalized linear translations MAGNETIC RESONANCE IN MEDICINE Cheng, J. Y., Alley, M. T., Cunningham, C. H., Vasanawala, S. S., Pauly, J. M., Lustig, M. 2012; 68 (6): 1785-1797

    Abstract

    MR scans are sensitive to motion effects due to the scan duration. To properly suppress artifacts from nonrigid body motion, complex models with elements such as translation, rotation, shear, and scaling have been incorporated into the reconstruction pipeline. However, these techniques are computationally intensive and difficult to implement for online reconstruction. On a sufficiently small spatial scale, the different types of motion can be well approximated as simple linear translations. This formulation allows for a practical autofocusing algorithm that locally minimizes a given motion metric--more specifically, the proposed localized gradient-entropy metric. To reduce the vast search space for an optimal solution, possible motion paths are limited to the motion measured from multichannel navigator data. The novel navigation strategy is based on the so-called "Butterfly" navigators, which are modifications of the spin-warp sequence that provides intrinsic translational motion information with negligible overhead. With a 32-channel abdominal coil, sufficient number of motion measurements were found to approximate possible linear motion paths for every image voxel. The correction scheme was applied to free-breathing abdominal patient studies. In these scans, a reduction in artifacts from complex, nonrigid motion was observed.

    View details for DOI 10.1002/mrm.24189

    View details for Web of Science ID 000311398600012

    View details for PubMedID 22307933

  • Fast Concomitant Gradient Field and Field Inhomogeneity Correction for Spiral Cardiac Imaging MAGNETIC RESONANCE IN MEDICINE Cheng, J. Y., Santos, J. M., Pauly, J. M. 2011; 66 (2): 390-401

    Abstract

    Non-Cartesian imaging provides many advantages in terms of flexibility, functionality, and speed. However, a major drawback to these imaging methods is off-resonance distortion artifacts. These artifacts manifest as blurring in spiral imaging. Common techniques that remove the off-resonance field inhomogeneity distortion effects are not sufficient, because the high order concomitant gradient fields are nontrivial for common imaging conditions, such as imaging 5 cm off isocenter in an 1.5 T scanner. Previous correction algorithms are either slow or do not take into account the known effects of concomitant gradient fields along with the field inhomogeneities. To ease the correction, the distortion effects are modeled as a non-stationary convolution problem. In this work, two fast and accurate postgridding algorithms are presented and analyzed. These methods account for both the concomitant field effects and the field inhomogeneities. One algorithm operates in the frequency domain and the other in the spatial domain. To take advantage of their speed and accuracy, the algorithms are applied to a real-time cardiac study and a high-resolution cardiac study. Both of the presented algorithms provide for a practical solution to the off-resonance problem in spiral imaging.

    View details for DOI 10.1002/mrm.22802

    View details for Web of Science ID 000293256800010

    View details for PubMedID 21384423

Stanford Medicine Resources: