Bio

Honors & Awards


  • Jane Coffin Childs Postdoctoral Fellowship (accepted), Jane Coffin Childs Memorial Fund (2013 - 2016)
  • Child Health Research Institute Postdoctoral Fellowship (accepted), NIH/Lucile Packard Foundation/Stanford CHRI (2013 - 2014)
  • Postdoctoral NRSA (awarded), NIA/NIH (2013 - 2016)
  • Dean's Postdoctoral Fellowship (awarded), Stanford University (2013 - 2014)
  • 34th Annual James L. O'Leary Prize, Washington University School of Medicine, Department of Neurology (2011)
  • Predoctoral NRSA, NIA/NIH (2009 - 2012)

Professional Education


  • Doctor of Philosophy, Washington University (2011)

Stanford Advisors


Publications

Journal Articles


  • Long-term cognitive impairments and pathological alterations in a mouse model of repetitive mild traumatic brain injury. Frontiers in neurology Luo, J., Nguyen, A., Villeda, S., Zhang, H., Ding, Z., Lindsey, D., Bieri, G., Castellano, J. M., Beaupre, G. S., Wyss-Coray, T. 2014; 5: 12-?

    Abstract

    Mild traumatic brain injury (mTBI, also referred to as concussion) accounts for the majority of all traumatic brain injuries. The consequences of repetitive mTBI have become of particular concern for individuals engaged in certain sports or in military operations. Many mTBI patients suffer long-lasting neurobehavioral impairments. In order to expedite pre-clinical research and therapy development, there is a need for animal models that reflect the long-term cognitive and pathological features seen in patients. In the present study, we developed and characterized a mouse model of repetitive mTBI, induced onto the closed head over the left frontal hemisphere with an electromagnetic stereotaxic impact device. Using GFAP-luciferase bioluminescence reporter mice that provide a readout of astrocyte activation, we observed an increase in bioluminescence relative to the force delivered by the impactor after single impact and cumulative effects of repetitive mTBI. Using the injury parameters established in the reporter mice, we induced a repetitive mTBI in wild-type C57BL/6J mice and characterized the long-term outcome. Animals received repetitive mTBI showed a significant impairment in spatial learning and memory when tested at 2 and 6 months after injury. A robust astrogliosis and increased p-Tau immunoreactivity were observed upon post-mortem pathological examinations. These findings are consistent with the deficits and pathology associated with mTBI in humans and support the use of this model to evaluate potential therapeutic approaches.

    View details for DOI 10.3389/fneur.2014.00012

    View details for PubMedID 24550885

  • ApoE influences amyloid-ß (Aß) clearance despite minimal apoE/Aß association in physiological conditions. Proceedings of the National Academy of Sciences of the United States of America Verghese, P. B., Castellano, J. M., Garai, K., Wang, Y., Jiang, H., Shah, A., Bu, G., Frieden, C., Holtzman, D. M. 2013; 110 (19): E1807-16

    Abstract

    Apolipoprotein E gene (APOE) alleles may shift the onset of Alzheimer's disease (AD) through apoE protein isoforms changing the probability of amyloid-β (Aβ) accumulation. It has been proposed that differential physical interactions of apoE isoforms with soluble Aβ (sAβ) in brain fluids influence the metabolism of Aβ, providing a mechanism to account for how APOE influences AD risk. In contrast, we provide clear evidence that apoE and sAβ interactions occur minimally in solution and in the cerebrospinal fluid of human subjects, producing apoE3 and apoE4 isoforms as assessed by multiple biochemical and analytical techniques. Despite minimal extracellular interactions with sAβ in fluid, we find that apoE isoforms regulate the metabolism of sAβ by astrocytes and in the interstitial fluid of mice that received apoE infusions during brain Aβ microdialysis. We find that a significant portion of apoE and sAβ compete for the low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cellular uptake pathway in astrocytes, providing a mechanism to account for apoE's regulation of sAβ metabolism despite minimal evidence of direct interactions in extracellular fluids. We propose that apoE influences sAβ metabolism not through direct binding to sAβ in solution but through its actions with other interacting receptors/transporters and cell surfaces. These results provide an alternative frame work for the mechanistic explanations on how apoE isoforms influence the risk of AD pathogenesis.

    View details for DOI 10.1073/pnas.1220484110

    View details for PubMedID 23620513

  • In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis MOLECULAR NEURODEGENERATION Ulrich, J. D., Burchett, J. M., Restivo, J. L., Schuler, D. R., Verghese, P. B., Mahan, T. E., Landreth, G. E., Castellano, J. M., Jiang, H., Cirrito, J. R., Holtzman, D. M. 2013; 8

    Abstract

    The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer's disease. The link between apolipoprotein E (apoE) and Alzheimer's disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer's disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes.We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4.We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse. Our technique enables assessment of brain apoE dynamics under physiological and pathophysiological conditions and in response to therapeutic interventions designed to affect apoE levels and lipidation within the brain.

    View details for DOI 10.1186/1750-1326-8-13

    View details for Web of Science ID 000318657400001

    View details for PubMedID 23601557

  • Low-density lipoprotein receptor overexpression enhances the rate of brain-to-blood A beta clearance in a mouse model of beta-amyloidosis PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Castellano, J. M., Deane, R., Gottesdiener, A. J., Verghese, P. B., Stewart, F. R., West, T., Paoletti, A. C., Kasper, T. R., DeMattos, R. B., Zlokovic, B. V., Holtzman, D. M. 2012; 109 (38): 15502-15507

    Abstract

    The apolipoprotein E (APOE)-ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease, likely increasing risk by altering amyloid-β (Aβ) accumulation. We recently demonstrated that the low-density lipoprotein receptor (LDLR) is a major apoE receptor in the brain that strongly regulates amyloid plaque deposition. In the current study, we sought to understand the mechanism by which LDLR regulates Aβ accumulation by altering Aβ clearance from brain interstitial fluid. We hypothesized that increasing LDLR levels enhances blood-brain barrier-mediated Aβ clearance, thus leading to reduced Aβ accumulation. Using the brain Aβ efflux index method, we found that blood-brain barrier-mediated clearance of exogenously administered Aβ is enhanced with LDLR overexpression. We next developed a method to directly assess the elimination of centrally derived, endogenous Aβ into the plasma of mice using an anti-Aβ antibody that prevents degradation of plasma Aβ, allowing its rate of appearance from the brain to be measured. Using this plasma Aβ accumulation technique, we found that LDLR overexpression enhances brain-to-blood Aβ transport. Together, our results suggest a unique mechanism by which LDLR regulates brain-to-blood Aβ clearance, which may serve as a useful therapeutic avenue in targeting Aβ clearance from the brain.

    View details for DOI 10.1073/pnas.1206446109

    View details for Web of Science ID 000309211000085

    View details for PubMedID 22927427

  • Human apoE Isoforms Differentially Regulate Brain Amyloid-beta Peptide Clearance SCIENCE TRANSLATIONAL MEDICINE Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W., Fagan, A. M., Morris, J. C., Mawuenyega, K. G., Cruchaga, C., Goate, A. M., Bales, K. R., Paul, S. M., Bateman, R. J., Holtzman, D. M. 2011; 3 (89)

    Abstract

    The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer's disease (AD). The APOE ε4 allele markedly increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk. Most rare, early-onset forms of familial AD are caused by autosomal dominant mutations that often lead to overproduction of Aβ(42) peptide. However, the mechanism by which APOE alleles differentially modulate Aβ accumulation in sporadic, late-onset AD is less clear. In a cohort of cognitively normal individuals, we report that reliable molecular and neuroimaging biomarkers of cerebral Aβ deposition vary in an apoE isoform-dependent manner. We hypothesized that human apoE isoforms differentially affect Aβ clearance or synthesis in vivo, resulting in an apoE isoform-dependent pattern of Aβ accumulation later in life. Performing in vivo microdialysis in a mouse model of Aβ-amyloidosis expressing human apoE isoforms (PDAPP/TRE), we find that the concentration and clearance of soluble Aβ in the brain interstitial fluid depends on the isoform of apoE expressed. This pattern parallels the extent of Aβ deposition observed in aged PDAPP/TRE mice. ApoE isoform-dependent differences in soluble Aβ metabolism are observed not only in aged but also in young PDAPP/TRE mice well before the onset of Aβ deposition in amyloid plaques in the brain. Additionally, amyloidogenic processing of amyloid precursor protein and Aβ synthesis, as assessed by in vivo stable isotopic labeling kinetics, do not vary according to apoE isoform in young PDAPP/TRE mice. Our results suggest that APOE alleles contribute to AD risk by differentially regulating clearance of Aβ from the brain, suggesting that Aβ clearance pathways may be useful therapeutic targets for AD prevention.

    View details for DOI 10.1126/scitranslmed.3002156

    View details for Web of Science ID 000292982100004

    View details for PubMedID 21715678

  • Apolipoprotein E in Alzheimer's disease and other neurological disorders LANCET NEUROLOGY Verghese, P. B., Castellano, J. M., Holtzman, D. M. 2011; 10 (3): 241-252

    Abstract

    Apolipoprotein E (APOE) is a 299-aminoacid protein encoded by the APOE gene. Three common polymorphisms in the APOE gene, ɛ2, ɛ3, and ɛ4, result in a single aminoacid change in the APOE protein. APOE ɛ2, ɛ3, and ɛ4 alleles strongly alter, in a dose-dependent manner, the likelihood of developing Alzheimer's disease and cerebral amyloid angiopathy. In particular, APOE ɛ4 is associated with increased risk for Alzheimer's disease whereas APOE ɛ2 is associated with decreased risk. The effects of APOE genotype on risk of these diseases are likely to be mediated by differential effects of APOE on amyloid-β accumulation in the brain and its vasculature. Response to treatment for Alzheimer's disease might differ according to APOE genotype. Because convincing evidence ties the APOE genotype to risk of Alzheimer's disease and cerebral amyloid angiopathy, APOE has been studied in other neurological diseases. APOE ɛ4 is associated with poor outcome after traumatic brain injury and brain haemorrhage, although the mechanisms underlying these associations are unclear. The possibility that APOE has a role in these and other neurological diseases has been of great interest, but convincing associations have not yet emerged.

    View details for Web of Science ID 000288482200012

    View details for PubMedID 21349439

  • Overexpression of Low-Density Lipoprotein Receptor in the Brain Markedly Inhibits Amyloid Deposition and Increases Extracellular A beta Clearance NEURON Kim, J., Castellano, J. M., Jiang, H., Basak, J. M., Parsadanian, M., Pham, V., Mason, S. M., Paul, S. M., Holtzman, D. M. 2009; 64 (5): 632-644

    Abstract

    Apolipoprotein E (APOE) is the strongest genetic risk factor for Alzheimer's disease (AD). Previous studies suggest that the effect of apoE on amyloid-beta (A beta) accumulation plays a major role in AD pathogenesis. Therefore, understanding proteins that control apoE metabolism may provide new targets for regulating A beta levels. LDLR, a member of the LDL receptor family, binds to apoE, yet its potential role in AD pathogenesis remains unclear. We hypothesized that LDLR overexpression in the brain would decrease apoE levels, enhance A beta clearance, and decrease A beta deposition. To test our hypothesis, we created several transgenic mice that overexpress LDLR in the brain and found that apoE levels in these mice decreased by 50%-90%. Furthermore, LDLR overexpression dramatically reduced A beta aggregation and enhanced A beta clearance from the brain extracellular space. Plaque-associated neuroinflammatory responses were attenuated in LDLR transgenic mice. These findings suggest that increasing LDLR levels may represent a novel AD treatment strategy.

    View details for DOI 10.1016/j.neuron.2009.11.013

    View details for Web of Science ID 000273123700010

    View details for PubMedID 20005821

Stanford Medicine Resources: