Bio

Honors & Awards


  • Postdoctoral Fellowship, Life Sciences Research Foundation (2011-2014)
  • Chair, 2014 Myelin Gordon Research Seminar (2014)

Professional Education


  • Doctor of Philosophy, University of California San Francisco (2009)

Stanford Advisors


Publications

Journal Articles


  • Intrinsic and extrinsic control of oligodendrocyte development. Current opinion in neurobiology Zuchero, J. B., Barres, B. A. 2013; 23 (6): 914-920

    Abstract

    Oligodendrocytes (OLs) are the myelinating glia of the central nervous system. Myelin is essential for the rapid propagation of action potentials as well as for metabolic support of axons, and its loss in demyelinating diseases like multiple sclerosis has profound pathological consequences. The many steps in the development of OLs - from the specification of oligodendrocyte precursor cells (OPCs) during embryonic development to their differentiation into OLs that myelinate axons - are under tight regulation. Here we discuss recent advances in understanding how these steps of OL development are controlled intrinsically by transcription factors and chromatin remodeling and extrinsically by signaling molecules and neuronal activity. We also discuss how knowledge of these pathways is now allowing us to take steps toward generating patient-specific OPCs for disease modeling and myelin repair.

    View details for DOI 10.1016/j.conb.2013.06.005

    View details for PubMedID 23831087

  • Generation of oligodendroglial cells by direct lineage conversion. Nature biotechnology Yang, N., Zuchero, J. B., Ahlenius, H., Marro, S., Ng, Y. H., Vierbuchen, T., Hawkins, J. S., Geissler, R., Barres, B. A., Wernig, M. 2013; 31 (5): 434-439

    Abstract

    Transplantation of oligodendrocyte precursor cells (OPCs) is a promising potential therapeutic strategy for diseases affecting myelin. However, the derivation of engraftable OPCs from human pluripotent stem cells has proven difficult and primary OPCs are not readily available. Here we report the generation of induced OPCs (iOPCs) by direct lineage conversion. Forced expression of the three transcription factors Sox10, Olig2 and Zfp536 was sufficient to reprogram mouse and rat fibroblasts into iOPCs with morphologies and gene expression signatures resembling primary OPCs. More importantly, iOPCs gave rise to mature oligodendrocytes that could ensheath multiple host axons when co-cultured with primary dorsal root ganglion cells and formed myelin after transplantation into shiverer mice. We propose direct lineage reprogramming as a viable alternative approach for the generation of OPCs for use in disease modeling and regenerative medicine.

    View details for DOI 10.1038/nbt.2564

    View details for PubMedID 23584610

  • Between the sheets: a molecular sieve makes myelin membranes. Developmental cell Zuchero, J. B., Barres, B. A. 2011; 21 (3): 385-386

    Abstract

    Myelin is a lipid-rich, spiraled membrane structure that allows for rapid propagation of action potentials through axons. In this issue, Aggarwal et al. (2011) present evidence that myelin basic protein, essential for myelination by oligodendrocytes, regulates the biosynthesis of myelin membranes by restricting diffusion of membrane-bound proteins into compact myelin.

    View details for DOI 10.1016/j.devcel.2011.08.023

    View details for PubMedID 21920305

Stanford Medicine Resources: