Bio

Academic Appointments


Administrative Appointments


  • Chair, Research Committee, American Academy for Cerebral Palsy and Developmental Medicine (2013 - 2015)
  • Faculty Senate, Stanford University School of Medicine (2013 - 2015)

Boards, Advisory Committees, Professional Organizations


  • Board of Directors, Society for Brain Mapping and Therapeutics (2013 - Present)
  • Taskforce on Childhood Motor Disorders, NIH (2001 - Present)
  • Spectrum Child Health Research Institute Committee Member, Stanford University School of Medicine (2013 - Present)
  • Research Committee Member, American Academy for Cerebral Palsy and Developmental Medicine (2009 - Present)

Research & Scholarship

Current Research and Scholarly Interests


Dr. Rose directs the Motion & Gait Analysis Lab at Lucile Packard Children's Hospital, a multidisciplinary diagnostic service for patients with gait and upper limb movement disorders. Dr. Rose's research investigates early brain and motor development in preterm children and the neuromuscular mechanisms underlying motor deficits in children with cerebral palsy (CP).

Previous research has investigated energy cost of walking, muscle pathology, postural balance, and neuromuscular activation in CP. Recent research investigates neonatal micro-structural brain development on diffusion tensor MRI in relation to motor function in preterm children. Initial research examined energetics of walking in CP and muscle pathophysiology in spastic CP (Rose et al, J Orthop Res, 1994). The histologic and morphometric study of spastic muscle in children with diplegia, revealed abnormal predominance of type 1 fibers and fiber size variability, suggesting reduced motor-unit firing rates associated with impaired descending motor signals. Neuromuscular activation and motor-unit firing characteristics were investigated with EMG decomposition techniques in spastic lower limb muscles in CP (Rose and McGill, Dev Med Child Neurol, 2005) and found maximal voluntary neuromuscular activation (maximal voluntary EMG/ M-wave amplitude) was substantially reduced, while motor-unit recruitment was found normal at low-moderate levels of contraction. Extrapolation to maximal levels of neuromuscular activation suggested maximal motor-unit firing rates were reduced to approximately 50% of control values. Four primary interrelated motor deficits of spastic CP: weakness, short muscle tendon unit, spasticity, and impaired selective motor control, were identified through these studies and through EMG studies of selective motor control. The EMG studies revealed obligatory muscle co-activation of gastrocnemius during quadriceps activation in spastic CP that contributes to gait deficits, in even mild CP (Rose et al, J Ped Orthop, 1999, Policy et al, J Ped Orthop, 2001). Postural balance was examined using force plate center-of pressure measures and found approximately 30% of children with spastic CP had balance impairment (Wolff et al, J Orthop Res, 1998, Rose et al, Dev Med Child Neurol, 2002).

Recent research examined neonatal micro-structural brain development on diffusion tensor MRI and motor function in very-low-birth-weight preterm children (Rose et al, Ped Res, 2005, Rose et al. Dev Med Child Neurol 2007; 2009). Related research investigated relations between cerebellar structure and postural balance in adults. Ongoing research examines early regional brain development and perinatal risk factors at near-term age in relation to later motor deficits. This research aims to develop a neonatal prognostic index for motor function to guide early, more effective intervention.

Dr. Rose serves on the Neurophysiology section of the NH Taskforce on Childhood Motor Disorders, Chairs the Research Committee of the American Academy for Cerebral Palsy and Developmental Medicine (AACPDM), serves on the Board of Directors of the Society for Brain Mapping and Therapeutics (SBMT), and leads the National Research Network on Artificial Walking Technologies for NMES-assisted Gait for Children with CP. She is co-editor of the book, Human Walking 3rd Edition, (Rose J and Gamble JG, Editors, Lippincott, WilIiams and Wilkins, 2006) which offers a multidisciplinary perspective on human walking and gait analysis. She has served as course director of Anatomy of Movement (Ortho 222), a multidisciplinary course on musculoskeletal anatomy and clinical applications that offers perspectives from bioengineering, anthropology, and art history.

Teaching

2013-14 Courses


Graduate and Fellowship Programs


Publications

Journal Articles


  • Brain microstructural development at near-term age in very-low-birth-weight preterm infants: An atlas-based diffusion imaging study. NeuroImage Rose, J., Vassar, R., Cahill-Rowley, K., Guzman, X. S., Stevenson, D. K., Barnea-Goraly, N. 2014; 86: 244-256

    Abstract

    At near-term age the brain undergoes rapid growth and development. Abnormalities identified during this period have been recognized as potential predictors of neurodevelopment in children born preterm. This study used diffusion tensor imaging (DTI) to examine white matter (WM) microstructure in very-low-birth-weight (VLBW) preterm infants to better understand regional WM developmental trajectories at near-term age. DTI scans were analyzed in a cross-sectional sample of 45 VLBW preterm infants (BW≤1500g, GA≤32weeks) within a cohort of 102 neonates admitted to the NICU and recruited to participate prior to standard-of-care MRI, from 2010 to 2011, 66/102 also had DTI. For inclusion in this analysis, 45 infants had DTI, no evidence of brain abnormality on MRI, and were scanned at PMA ≤40weeks (34.7-38.6). White matter microstructure was analyzed in 19 subcortical regions defined by DiffeoMap neonatal brain atlas, using threshold values of trace <0.006mm(2)s(-1) and FA >0.15. Regional fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were calculated and temporal-spatial trajectories of development were examined in relation to PMA and brain region location. Posterior regions within the corona radiata (CR), corpus callosum (CC), and internal capsule (IC) demonstrated significantly higher mean FA values compared to anterior regions. Posterior regions of the CR and IC demonstrated significantly lower RD values compared to anterior regions. Centrally located projection fibers demonstrated higher mean FA and lower RD values than peripheral regions including the posterior limb of the internal capsule (PLIC), cerebral peduncle, retrolenticular part of the IC, posterior thalamic radiation, and sagittal stratum. Centrally located association fibers of the external capsule had higher FA and lower RD than the more peripherally-located superior longitudinal fasciculus (SLF). A significant relationship between PMA-at-scan and FA, MD, and RD was demonstrated by a majority of regions, the strongest correlations were observed in the anterior limb of the internal capsule, a region undergoing early stages of myelination at near-term age, in which FA increased (r=.433, p=.003) and MD (r=-.545, p=.000) and RD (r=-.540, p=.000) decreased with PMA-at-scan. No correlation with PMA-at-scan was observed in the CC or SLF, regions that myelinate later in infancy. Regional patterns of higher FA and lower RD were observed at this near-term age, suggestive of more advanced microstructural development in posterior compared to anterior regions within the CR, CC, and IC and in central compared to peripheral WM structures. Evidence of region-specific rates of microstructural development was observed. Temporal-spatial patterns of WM microstructure development at near-term age have important implications for interpretation of near-term DTI and for identification of aberrations in typical developmental trajectories that may signal future impairment.

    View details for DOI 10.1016/j.neuroimage.2013.09.053

    View details for PubMedID 24091089

  • The Pediatric Upper Limb Motion Index and a temporal-spatial logistic regression: Quantitative analysis of upper limb movement disorders during the Reach & Grasp Cycle JOURNAL OF BIOMECHANICS Butler, E. E., Rose, J. 2012; 45 (6): 945-951

    Abstract

    This study describes a novel pediatric upper limb motion index (PULMI) for children with cerebral palsy (CP). The PULMI is based on three-dimensional kinematics and provides quantitative information about upper limb motion during the Reach & Grasp Cycle. We also report key temporal-spatial parameters for children with spastic, dyskinetic, and ataxic CP. Participants included 30 typically-developing (TD) children (age=10.9±4.1 years) and 25 children with CP and upper limb involvement (age=12.3±3.7 years), Manual Ability Classification System (MACS) levels I-IV. The PULMI is calculated from the root-mean-square difference for eight kinematic variables between each child with CP and the average TD values, and scaled such that the TD PULMI is 100±10. The PULMI was significantly lower among children with CP compared to TD children (Wilcoxon Z=-5.06, p<.0001). PULMI scores were significantly lower among children with dyskinetic CP compared to spastic CP (Z=-2.47, p<.0135). There was a strong negative correlation between PULMI and MACS among children with CP (Spearman's rho=-.78, p<.0001). Temporal-spatial values were significantly different between CP and TD children: movement time (Z=4.06, p<.0001), index of curvature during reach (Z=3.68, p=.0002), number of movement units (Z=3.72, p=.0002), angular velocity of elbow extension during reach (Z=-3.96, p<.0001), and transport(1):reach peak velocities (Z=-2.48, p=.0129). A logistic regression of four temporal-spatial parameters, the Pediatric Upper Limb Temporal-Spatial Equation (PULTSE), correctly predicted 19/22 movement disorder subtypes (spastic versus dyskinetic CP). The PULMI, PULTSE, and key temporal-spatial parameters of the Reach & Grasp Cycle offer a quantitative approach to analyzing upper limb function in children with CP.

    View details for DOI 10.1016/j.jbiomech.2012.01.018

    View details for Web of Science ID 000302980600006

    View details for PubMedID 22304845

  • Rotational Biomechanics of the Elite Golf Swing: Benchmarks for Amateurs JOURNAL OF APPLIED BIOMECHANICS Meister, D. W., Ladd, A. L., Butler, E. E., Zhao, B., Rogers, A. P., Ray, C. J., Rose, J. 2011; 27 (3): 242-251

    Abstract

    The purpose of this study was to determine biomechanical factors that may influence golf swing power generation. Three-dimensional kinematics and kinetics were examined in 10 professional and 5 amateur male golfers. Upper-torso rotation, pelvic rotation, X-factor (relative hip-shoulder rotation), O-factor (pelvic obliquity), S-factor (shoulder obliquity), and normalized free moment were assessed in relation to clubhead speed at impact (CSI). Among professional golfers, results revealed that peak free moment per kilogram, peak X-factor, and peak S-factor were highly consistent, with coefficients of variation of 6.8%, 7.4%, and 8.4%, respectively. Downswing was initiated by reversal of pelvic rotation, followed by reversal of upper-torso rotation. Peak X-factor preceded peak free moment in all swings for all golfers, and occurred during initial downswing. Peak free moment per kilogram, X-factor at impact, peak X-factor, and peak upper-torso rotation were highly correlated to CSI (median correlation coefficients of 0.943, 0.943, 0.900, and 0.900, respectively). Benchmark curves revealed kinematic and kinetic temporal and spatial differences of amateurs compared with professional golfers. For amateurs, the number of factors that fell outside 1-2 standard deviations of professional means increased with handicap. This study identified biomechanical factors highly correlated to golf swing power generation and may provide a basis for strategic training and injury prevention.

    View details for Web of Science ID 000294093000009

    View details for PubMedID 21844613

  • Physiologic Correlates of T'ai Chi Chuan JOURNAL OF ALTERNATIVE AND COMPLEMENTARY MEDICINE Iuliano, B., Grahn, D., Cao, V., Zhao, B., Rose, J. 2011; 17 (1): 77-81

    Abstract

    T'ai chi chuan, the ancient Chinese martial art, is practiced by millions of people worldwide and is an activity of moderate intensity that involves slow, circular movements. Evidence of substantial health benefits of t'ai chi chuan is emerging, however, the physiologic mechanisms are not well-understood. T'ai chi chuan masters routinely report sensing qi or internal energy flow, particularly in the hands. The purpose of this case study was to determine whether physiologic responses normally associated with thermoregulation are activated during a basic t'ai chi chuan exercise.Trials consisted of three focus periods and one withdraw period (during which the subject withdrew internal energy in the hands), each followed by a rest period. Measurements included infrared-thermography (IR), thermocoupled temperature measures, and laser Doppler flowmetry.Substantial increases in local palmar and face surface temperatures were observed with IR thermography during focus periods and substantial decreases were observed during the withdraw period. Fingertip surface baseline temperatures were 31.1°C for one trial, increased by 1.8°C during the focus period, and then decreased by 4.9°C during the withdraw period. A twofold increase in blood flow through fingertip regions paralleled changes in fingertip surface temperatures during focus periods.Changes in regional blood flow and surface temperatures closely paralleled onsets of focus, rest, and withdraw periods and appear to be volitional activations of known vasomotor mechanisms underlying non-hairy skin regions such as the hands and face. Changes in blood flow through these vascular structures are generally autonomic thermoregulatory responses, not normally under voluntary control, but may also represent a relaxation response.

    View details for DOI 10.1089/acm.2009.0710

    View details for Web of Science ID 000286594500015

    View details for PubMedID 21222533

  • Definition and Classification of Hyperkinetic Movements in Childhood MOVEMENT DISORDERS Sanger, T. D., Chen, D., Fehlings, D. L., Hallett, M., Lang, A. E., Mink, J. W., Singer, H. S., Alter, K., Ben-Pazi, H., Butler, E. E., Chen, R., Collins, A., Dayanidhi, S., Forssberg, H., Fowler, E., Gilbert, D. L., Gorman, S. L., Gormley, M. E., Jinnah, H. A., Kornblau, B., Krosschell, K. J., Lehman, R. K., MacKinnon, C., Malanga, C. J., Mesterman, R., Michaels, M. B., Pearson, T. S., Rose, J., Russman, B. S., Sternad, D., Swoboda, K. J., Valero-Cuevas, F. 2010; 25 (11): 1538-1549

    Abstract

    Hyperkinetic movements are unwanted or excess movements that are frequently seen in children with neurologic disorders. They are an important clinical finding with significant implications for diagnosis and treatment. However, the lack of agreement on standard terminology and definitions interferes with clinical treatment and research. We describe definitions of dystonia, chorea, athetosis, myoclonus, tremor, tics, and stereotypies that arose from a consensus meeting in June 2008 of specialists from different clinical and basic science fields. Dystonia is a movement disorder in which involuntary sustained or intermittent muscle contractions cause twisting and repetitive movements, abnormal postures, or both. Chorea is an ongoing random-appearing sequence of one or more discrete involuntary movements or movement fragments. Athetosis is a slow, continuous, involuntary writhing movement that prevents maintenance of a stable posture. Myoclonus is a sequence of repeated, often nonrhythmic, brief shock-like jerks due to sudden involuntary contraction or relaxation of one or more muscles. Tremor is a rhythmic back-and-forth or oscillating involuntary movement about a joint axis. Tics are repeated, individually recognizable, intermittent movements or movement fragments that are almost always briefly suppressible and are usually associated with awareness of an urge to perform the movement. Stereotypies are repetitive, simple movements that can be voluntarily suppressed. We provide recommended techniques for clinical examination and suggestions for differentiating between the different types of hyperkinetic movements, noting that there may be overlap between conditions. These definitions and the diagnostic recommendations are intended to be reliable and useful for clinical practice, communication between clinicians and researchers, and for the design of quantitative tests that will guide and assess the outcome of future clinical trials.

    View details for DOI 10.1002/mds.23088

    View details for Web of Science ID 000281346400003

    View details for PubMedID 20589866

  • Temporal-spatial parameters of the upper limb during a Reach & Grasp Cycle for children GAIT & POSTURE Butler, E. E., Ladd, A. L., Lamont, L. E., Rose, J. 2010; 32 (3): 301-306

    Abstract

    The objective of this study was to characterize normal temporal-spatial patterns during the Reach & Grasp Cycle and to identify upper limb motor deficits in children with cerebral palsy (CP). The Reach & Grasp Cycle encompasses six sequential tasks: reach, grasp cylinder, transport to self (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. Three-dimensional motion data were recorded from 25 typically developing children (11 males, 14 females; ages 5-18 years) and 12 children with hemiplegic CP (2 males, 10 females; ages 5-17 years). Within-day and between-day coefficients of variation for the control group ranged from 0 to 0.19, indicating good repeatability of all parameters. The mean duration of the Cycle for children with CP was nearly twice as long as controls, 9.5±4.3s versus 5.1±1.2s (U=37.0, P=.002), partly due to prolonged grasp and release durations. Peak hand velocity occurred at approximately 40% of each phase and was greater during the transport (T(1), T(2)) than non-transport phases (reach, return) in controls (P<.001). Index of curvature was lower during transport versus non-transport phases for all children. Children with CP demonstrated an increased index of curvature during reach (U=46.0, P=.0074) and an increased total number of movement units (U=16.5, P<.0001) compared to controls, indicating less efficient and less smooth movements. Total duration of the Reach & Grasp Cycle (rho=.957, P<.0001), index of curvature during reach and T(1) (rho=.873, P=.0002 and rho=.778, P=.0028), and total number of movement units (rho=.907, P<.0001) correlated strongly with MACS score. The consistent normative data and the substantial differences between children with CP and controls reflect utility of the Reach & Grasp Cycle for quantitative evaluation of upper limb motor deficits.

    View details for DOI 10.1016/j.gaitpost.2010.05.013

    View details for Web of Science ID 000283459100004

    View details for PubMedID 20558067

  • Three-dimensional kinematics of the upper limb during a Reach and Grasp Cycle for children GAIT & POSTURE Butler, E. E., Ladd, A. L., Louie, S. A., Lamont, L. E., Wong, W., Rose, J. 2010; 32 (1): 72-77

    Abstract

    The ability to reach, grasp, transport, and release objects is essential for activities of daily living. The objective of this study was to develop a quantitative method to assess upper limb motor deficits in children with cerebral palsy (CP) using three-dimensional motion analysis. We report kinematic data from 25 typically developing (TD) children (11 males, 14 females; ages 5-18 years) and 2 children with spastic hemiplegic CP (2 females, ages 14 and 15 years) during the Reach and Grasp Cycle. The Cycle includes six sequential tasks: reach, grasp cylinder, transport to mouth (T(1)), transport back to table (T(2)), release cylinder, and return to initial position. It was designed to represent a functional activity that was challenging yet feasible for children with CP. For example, maximum elbow extension was 43+/-11 degrees flexion in the TD group. Consistent kinematic patterns emerged for the trunk and upper limb: coefficients of variation at point of task achievement for reach, T(1), and T(2) for trunk flexion-extension were (.11, .11, .11), trunk axial rotation (.06, .06, .06), shoulder elevation (.13, .11, .13), elbow flexion-extension (.25, .06, .23), forearm pronation-supination (.08, .10, .11), and wrist flexion-extension (.25, .21, .22). The children with CP demonstrated reduced elbow extension, increased wrist flexion and trunk motion, with an increased tendency to actively externally rotate the shoulder and supinate the forearm during T(1) compared to the TD children. The consistent normative data and clinically significant differences in joint motion between the CP and TD children suggest the Reach and Grasp Cycle is a repeatable protocol for objective clinical evaluation of functional upper limb motor performance.

    View details for DOI 10.1016/j.gaitpost.2010.03.011

    View details for Web of Science ID 000279581000014

    View details for PubMedID 20378351

  • Mechanisms of Postural Control in Alcoholic Men and Women: Biomechanical Analysis of Musculoskeletal Coordination During Quiet Standing ALCOHOLISM-CLINICAL AND EXPERIMENTAL RESEARCH Sullivan, E. V., Rose, J., Pfefferbaum, A. 2010; 34 (3): 528-537

    Abstract

    Excessive sway during quiet standing is a common sequela of chronic alcoholism even with prolonged sobriety. Whether alcoholic men and women who have remained abstinent from alcohol for weeks to months differ from each other in the degree of residual postural instability and biomechanical control mechanisms has not been directly tested.We used a force platform to characterize center-of-pressure biomechanical features of postural sway, with and without stabilizing conditions from touch, vision, and stance, in 34 alcoholic men, 15 alcoholic women, 22 control men, and 29 control women. Groups were matched in age (49.4 years), general intelligence, socioeconomic status, and handedness. Each alcoholic group was sober for an average of 75 days.Analysis of postural sway when using all 3 stabilizing conditions versus none revealed diagnosis and sex differences in ability to balance. Alcoholics had significantly longer sway paths, especially in the anterior-posterior direction, than controls when maintaining erect posture without balance aids. With stabilizing conditions the sway paths of all groups shortened significantly, especially those of alcoholic men, who demonstrated a 3.1-fold improvement in sway path difference between the easiest and most challenging conditions; the remaining 3 groups, each showed a approximately 2.4-fold improvement. Application of a mechanical model to partition sway paths into open-loop and closed-loop postural control systems revealed that the sway paths of the alcoholic men but not alcoholic women were characterized by greater short-term (open-loop) diffusion coefficients without aids, often associated with muscle stiffening response. With stabilizing factors, all 4 groups showed similar long-term (closed loop) postural control. Correlations between cognitive abilities and closed-loop sway indices were more robust in alcoholic men than alcoholic women.Reduction in sway and closed-loop activity during quiet standing with stabilizing factors shows some differential expression in men and women with histories of alcohol dependence. Nonetheless, enduring deficits in postural instability of both alcoholic men and alcoholic women suggest persisting liability for falling.

    View details for DOI 10.1111/j.1530-0277.2009.01118.x

    View details for Web of Science ID 000275142100017

    View details for PubMedID 20028360

  • Physiological and Focal Cerebellar Substrates of Abnormal Postural Sway and Tremor in Alcoholic Women BIOLOGICAL PSYCHIATRY Sullivan, E. V., Rose, J., Pfefferbaum, A. 2010; 67 (1): 44-51

    Abstract

    Posturography analysis of static balance reveals marked sway and tremor in sober alcoholic men related to anterior vermis volume but can be attenuated by simple visual or tactile cues or alterations in stance. Whether alcoholic women, whose ataxia can persist with prolonged sobriety, exhibit the same physiological signature of balance instability and relation to cerebellar vermian volume as alcoholic men or can benefit from stabilizing factors is unknown.Groups comprised 15 alcohol-dependent women, alcohol-free (median 3 months) and 29 control women. Groups were matched in age, demographic features, and finger movement speed and underwent balance platform testing and magnetic resonance imaging scanning.Alcoholic women exhibited excessive sway path length (.6 SD), more dramatic in the anterior-posterior than medial-lateral direction. Truncal tremor, measured as peak sway velocity frequency, was disproportionately great in the 5 Hz to 7 Hz band of alcoholics. Control subjects and alcoholics exhibited sway and tremor reduction with visual, tactile, or stance-stabilizing conditions, which aided both groups equally well; thus, alcoholic women never achieved normal stability. Smaller anterior vermian volumes selectively correlated with longer sway path and higher 5 Hz to 7 Hz peak sway velocity.Sway and tremor abnormalities and the selective relations between greater sway and 5 Hz to 7 Hz tremor and smaller volumes of the anterior vermis had not heretofore been described in abstinent alcoholic women. Reduction in sway and tremor with stabilizing factors indicate that adaptive mechanisms involving sensorimotor integration can be invoked to compensate for vermian-related dysfunction.

    View details for DOI 10.1016/j.biopsych.2009.08.008

    View details for Web of Science ID 000272858600006

    View details for PubMedID 19782966

  • Selective motor control in spastic cerebral palsy DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J. 2009; 51 (8): 578-579

    View details for Web of Science ID 000268029100004

    View details for PubMedID 19627331

  • Neonatal brain structure on MRI and diffusion tensor imaging, sex, and neurodevelopment in very-low-birthweight preterm children DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J., Butler, E. E., Lamont, L. E., Barnes, P. D., Atlas, S. W., Stevenson, D. K. 2009; 51 (7): 526-535

    Abstract

    The neurological basis of an increased incidence of cerebral palsy (CP) in preterm males is unknown. This study examined neonatal brain structure on magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) at term-equivalent age, sex, and neurodevelopment at 1 year 6 months on the basis of the Amiel-Tison neurological examination, Gross Motor Function Classification System, and Bayley Scales of Infant Development in 78 very-low-birthweight preterm children (41 males, 37 females; mean gestational age 27.6 wks, SD 2.5; mean birthweight 1021 g, SD 339). Brain abnormalities on MRI and DTI were not different between males and females except in the splenium of the corpus callosum, where males had lower DTI fractional anisotropy (p=0.025) and a higher apparent diffusion coefficient (p=0.013), indicating delayed splenium development. In the 26 infants who were at higher risk on the basis of DTI, males had more abnormalities on MRI (p=0.034) and had lower fractional anisotropy and a higher apparent diffusion coefficient in the splenium (p=0.049; p=0.025) and right posterior limb of the internal capsule (PLIC; p=0.003; p=0.033). Abnormal neurodevelopment was more common in males (n=9) than in females (n=2; p=0.036). Children with abnormal neurodevelopment had more abnormalities on MRI (p=0.014) and reduced splenium and right PLIC fractional anisotropy (p=0.001; p=0.035). In children with abnormal neurodevelopment, right PLIC fractional anisotropy was lower than left (p=0.035), whereas in those with normal neurodevelopment right PLIC fractional anisotropy was higher than left (p=0.001). Right PLIC fractional anisotropy correlated to neurodevelopment (rho=0.371, p=0.002). Logistic regression predicted neurodevelopment with 94% accuracy; only right PLIC fractional anisotropy was a significant logistic coefficient. Results indicate that the higher incidence of abnormal neurodevelopment in preterm males relates to greater incidence and severity of brain abnormalities, including reduced PLIC and splenium development.

    View details for DOI 10.1111/j.1469-8749.2008.03231.x

    View details for Web of Science ID 000266696900007

    View details for PubMedID 19459915

  • Postural sway reduction in aging men and women: Relation to brain structure, cognitive status, and stabilizing factors NEUROBIOLOGY OF AGING Sullivan, E. V., Rose, J., Rohlfing, T., Pfefferbaum, A. 2009; 30 (5): 793-807

    Abstract

    Postural stability becomes compromised with advancing age, but the neural mechanisms contributing to instability have not been fully explicated. Accordingly, this quantitative physiological and MRI study of sex differences across the adult age range examined the association between components of postural control and the integrity of brain structure and function under different conditions of sensory input and stance stabilization manipulation. The groups comprised 28 healthy men (age 30-73 years) and 38 healthy women (age 34-74 years), who completed balance platform testing, cognitive assessment, and structural MRI. The results supported the hypothesis that excessive postural sway would be greater in older than younger healthy individuals when standing without sensory or stance aids, and that introduction of such aids would reduce sway in both principal directions (anterior-posterior and medial-lateral) and in both the open-loop and closed-loop components of postural control even in older individuals. Sway reduction with stance stabilization, that is, standing with feet apart, was greater in men than women, probably because older men were less stable than women when standing with their feet together. Greater sway was related to evidence for greater brain structural involutional changes, indexed as ventricular and sulcal enlargement and white matter hyperintensity burden. In women, poorer cognitive test performance related to less sway reduction with the use of sensory aids. Thus, aging men and women were shown to have diminished postural control, associated with cognitive and brain structural involution, in unstable stance conditions and with diminished sensory input.

    View details for DOI 10.1016/j.neurobiolaging.2007.08.021

    View details for Web of Science ID 000265018700012

    View details for PubMedID 17920729

  • Oral baclofen increases maximal voluntary neuromuscular activation of ankle plantar flexors in children with spasticity due to cerebral palsy JOURNAL OF CHILD NEUROLOGY van Doornik, J., Kukke, S., McGill, K., Rose, J., Sherman-Levine, S., Sanger, T. D. 2008; 23 (6): 635-639

    Abstract

    Although spasticity is a common symptom in children with cerebral palsy, weakness may be a much greater contributor to disability. We explore whether a treatment that reduces spasticity may also have potential benefit for improving strength. Ten children with cerebral palsy and spasticity in the ankle plantar flexor muscles were treated with oral baclofen for 4 weeks. We tested voluntary ability to activate ankle plantar flexor muscles using the ratio of the surface electromyographic signal during isometric maximal voluntary contraction to the M-wave during supramaximal electrical stimulation of the tibial nerve and tested muscle strength using maximal isometric plantar flexion torque. Mean maximal voluntary neuromuscular activation increased from 1.13 +/- 1.02 to 1.60 +/- 1.30 ( P < .05) after treatment, corresponding to an increase in 9 of 10 subjects. Mean maximal plantar flexion torque did not change. We conjecture that antispasticity agents could facilitate strength training by increasing the ability to voluntarily activate muscle.

    View details for DOI 10.1177/0883073807313046

    View details for Web of Science ID 000256033800006

    View details for PubMedID 18281622

  • Neonatal microstructural development of the internal capsule on diffusion tensor imaging correlates with severity of gait and motor deficits DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J., Mirmiran, M., Butler, E. E., Lin, C. Y., Barnes, P. D., Kermoian, R., Stevenson, D. K. 2007; 49 (10): 745-750

    Abstract

    Neonatal microstructural development in the posterior limbs of the internal capsule (PLIC) was assessed using diffusion tensor imaging (DTI) fractional anisotropy (FA) in 24 very-low-birthweight preterm infants at 37 weeks' gestational age and compared with the children's gait and motor deficits at 4 years of age. There were 14 participants with normal neonatal FA values (seven females, seven males; born at 27.6 weeks [SD 2.3] gestational age; birthweight 1027g [SD 229]) and 10 participants with low FA values in the PLIC (four females, six males; born at 28.4 weeks [SD 2.0] gestational age; birthweight 1041g [SD 322]). Seven of the 10 children with low FA and none of the children with normal FA had been diagnosed with CP by the time of gait testing. Among children with low neonatal FA, there was a strong negative correlation between FA of the combined left and right side PLIC and log NI (r=-0.89, p=0.001) and between FA and GMFCS (r=-0.65, p=0.04) at 4 years of age. There was no correlation between FA and gait NI or GMFCS at 4 years of age among children with normal neonatal FA. This preliminary study suggests neonatal DTI may be an important predictor of the severity of future gait and motor deficits.

    View details for Web of Science ID 000249660400007

    View details for PubMedID 17880643

  • Postural equilibrium during pregnancy: Decreased stability with an increased reliance on visual cues AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY Butler, E. E., Colon, I., Druzin, M. L., Rose, J. 2006; 195 (4): 1104-1108

    Abstract

    The purpose of this study was to determine whether there are changes in postural equilibrium during pregnancy and to examine whether the incidence of falls increases during pregnancy.Static postural balance measures were collected from 12 pregnant women at 11 to 14, 19 to 22, and 36 to 39 weeks gestation and at 6 to 8 weeks after delivery and from 12 nulligravid control subjects who were matched for age, height, weight, and body mass index. Subjects were asked to stand quietly on a stable force platform for 30 seconds with eyes open and closed. Path length and average radial displacement were computed on the basis of the average of 3 trials for each condition. The women were asked at each session if they had sustained a fall in the previous 3 months.Postural stability remained relatively stable during the first trimester; however, second and third trimester and postpartum values for path length and average radial displacement with eyes open and closed were increased significantly compared with the control subjects, which indicates diminished postural balance. The difference between the eyes open and closed values of path length increased as pregnancy progressed. Although 25% of pregnant women sustained falls, none of the control subjects had fallen in the past year.These data suggest that postural stability declines during pregnancy and remains diminished at 6 to 8 weeks after delivery. The study also indicates that there is an increased reliance on visual cues to maintain balance during pregnancy.

    View details for DOI 10.1016/j.ajog.2006.06.015

    View details for Web of Science ID 000241123500034

    View details for PubMedID 16846574

  • Effect of vision, touch and stance on cerebellar vermian-related sway and tremor: A quantitative physiological and MRI study CEREBRAL CORTEX Sullivan, E. V., Rose, J., Pfefferbaum, A. 2006; 16 (8): 1077-1086

    Abstract

    Postural balance is impaired in individuals with pathology of the anterior superior vermis of the cerebellum. Chronic alcoholism, with its known vermian pathology, provides a viable model for studying the relationship between cerebellar pathology and postural stability. Decades of separate study of recovering alcoholics and post-mortem neuroanatomical analysis have demonstrated vermian pathology but few studies have used quantitative posturography, acquired concurrently with quantitative neuroimaging, to establish whether this brain structure-function relationship is selective in vivo. Here, 30 healthy men and 39 chronic alcoholic men, abstinent from alcohol for several months, underwent MRI for volumetric quantitation of the cerebellar vermis and three comparison brain regions, the cerebellar hemispheres, supratentorial cortex and corpus callosum. All subjects also participated in an experiment involving a force platform that measured sway path length and tremor during static standing balance under four sensory conditions and two stance conditions. Three novel findings emerged: (i) sway path length, a physiological index of postural control, was selectively related to volume of the cerebellar vermis and not to any comparison brain region in the alcoholics; (ii) spectral analysis revealed sway prominence in the 2-5 Hz band, another physiological sign of vermian lesions and also selectively related to vermian volume in the alcoholics; and (iii) despite substantial postural sway in the patients, they successfully used vision, touch and stance to normalize sway and reduce tremor. The selective relationship of sway path to vermian but not lateral cerebellar volume provides correlational evidence for functional differentiation of these cerebellar regions. Improvement to virtual normal levels in balance and reduction in sway and tremor with changes in vision, touch and stance provide evidence that adaptive mechanisms recruiting sensorimotor integration can be invoked to compensate for underlying cerebellar vermian-related dysfunction.

    View details for DOI 10.1093/cercor/bhj048

    View details for Web of Science ID 000238906300003

    View details for PubMedID 16221930

  • Neuromuscular activation and motor-unit firing characteristics in cerebral palsy DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J., McGill, K. C. 2005; 47 (5): 329-336

    Abstract

    Muscle strength, neuromuscular activation, and motor-unit firing characteristics (firing rate, recruitment, and short-term synchronization) were assessed during voluntary contractions of the medial gastrocnemius (GAS) and tibialis anterior (TA) muscles of 10 participants with spastic diplegic or hemiplegic cerebral palsy (CP). The participants (six females, four males; age range 6 to 37y) walked with equinus gait at Gross Motor Function Classification System levels II to III. These were compared with 10 age-matched controls (five females; age range 7 to 35y). Neuromuscular activation was estimated by the ratio of surface electromyogram amplitude to M-wave amplitude elicited by supramaximal electrical nerve stimulation. Participants with CP produced significantly less torque (normalized by leg length) compared with controls (TA: mean 2.3, SD 1.6 vs mean 8.9, SD 3.4Nm/m; GAS mean 13.7, SD 7.1 vs mean 28.6, SD 5.1Nm/m, p < 0.001). Neuromuscular activation during maximum voluntary contraction was significantly reduced in the participants with CP compared with controls (mean 2.4, SD 1.5 vs mean 9.7, SD 2.7Nm/m for TA; mean 1.04, SD 0.41 vs mean 3.1, SD 1.2Nm/m for GAS, p < 0.001). When compared at the same submaximal level of neuromuscular activation, motor-unit recruitment and firing rates were not different between the groups, although short-term synchronization in TA was reduced in the participants with CP. These data indicate that weakness, known to be an important component of the motor deficit in CP, has a strong central component. Although the relation between recruitment and firing rate remained substantially intact at the low and moderate force contractions tested, results suggest that the participants with CP were unable to recruit higher threshold motor units or to drive lower threshold motor units to higher firing rates.

    View details for DOI 10.1017/S0012162205000629

    View details for Web of Science ID 000228793300008

    View details for PubMedID 15892375

  • Postural balance in children with cerebral palsy DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J., Wolff, D. R., Jones, V. K., Bloch, D. A., Oehlert, J. W., Gamble, J. G. 2002; 44 (1): 58-63

    Abstract

    Postural control deficits have been suggested to be a major component of gait disorders in cerebral palsy (CP). Standing balance was investigated in 23 ambulatory children and adolescents with spastic diplegic CP, ages 5 to 18 years, and compared with values of 92 children without disability, ages 5 to 18 years, while they stood on a force plate with eyes open or eyes closed. The measurements included center of pressure calculations of path length per second, average radial displacement, mean frequency of sway, and Brownian random motion measures of the short-term diffusion coefficient, and the long-term scaling exponent. In the majority of children with CP (14 of 23) all standing balance values were normal. However, approximately one-third of the children with CP (eight of 23) had abnormal values in at least two of the six center of pressure measures. Thus, mean values for path length, average radial displacement, and diffusion coefficient were higher for participants with CP compared with control individuals with eyes open and closed (p<0.05). Mean values for frequency of sway and the long-term scaling exponent were lower for participants with CP compared with control participants (p<0.05). Increased average radial displacement was the most common (nine of 23) postural control deficit. There was no increase in abnormal values with eyes closed compared with eyes open for participants with CP, indicating that most participants with CP had normal dependence on visual feedback to maintain balance. Identification of those children with impaired standing balance can delineate factors that contribute to the patient's gait disorder and help to guide treatment.

    View details for Web of Science ID 000173138000009

    View details for PubMedID 11811652

  • Electromyographic test to differentiate mild diplegic cerebral palsy and idiopathic toe-walking JOURNAL OF PEDIATRIC ORTHOPAEDICS Policy, J. F., Torburn, L., Rinsky, L. A., Rose, J. 2001; 21 (6): 784-789

    Abstract

    The purpose of this study was to determine whether children with mild spastic diplegic cerebral palsy (CP) could be differentiated from those with idiopathic toe-walking (ITW) based on an obligatory coactivation during voluntary contraction of the quadriceps or gastrocnemius. Twenty-four subjects participated in this study, eight children with mild spastic diplegia CP, eight with ITW, and eight age-matched controls. Measurements included passive range of motion and surface electromyographic recordings of the lateral quadriceps and lateral gastrocnemius. Electromyographic recordings were obtained during resisted knee extension with knee flexed 30 degrees, isometric quadriceps contraction with knee extended (quad set), active plantarflexion, and during gait. The range-of-motion values were not different between the CP and ITW subjects, with the exception of the popliteal angle, which was greater in subjects with CP, with an overlap in values. Gait electromyography showed premature firing of gastrocnemius in swing in both groups of subjects compared with controls. During resisted knee extension and quad set, the mean duration of gastrocnemius coactivation in subjects with CP was high: 86% and 86% compared with 20% and 35% for the subjects with ITW and 0.4% and 3% for controls, respectively. Voluntary plantarflexion did not consistently elicit coactivation of the quadriceps. The results suggest that electromyographic testing of resisted knee extension and quad set to identify gastrocnemius coactivation can help differentiate patients with mild CP from those with ITW.

    View details for Web of Science ID 000171936500016

    View details for PubMedID 11675555

  • Electromyographic differentiation of diplegic cerebral palsy from idiopathic toe walking: Involuntary coactivation of the quadriceps and gastrocnemius JOURNAL OF PEDIATRIC ORTHOPAEDICS Rose, J., Martin, J. G., Torburn, L., Rinsky, L. A., Gamble, J. G. 1999; 19 (5): 677-682

    Abstract

    Clinical differentiation of patients with mild diplegic cerebral palsy (CP) and idiopathic toe walking (ITW) can be difficult. However, an involuntary extensor pattern may be a distinguishing sign. The purpose of this study was to determine if selected gait parameters or patterns of electromyogram (EMG) timing of quadriceps, gastrocnemius, and tibialis anterior during knee extension while sitting can distinguish between these patients. The hypothesis was that EMG testing for selective control of the quadriceps and gastrocnemius could differentiate patients with diplegic CP from normal controls and from patients with ITW. We evaluated 10 control, eight CP, and eight ITW subjects. Measurements included walking speed, energy expenditure index (EEI), ankle position during stance, and EMG of the quadriceps, gastrocnemius, and tibialis anterior during gait and during knee extension while sitting. Dynamic EMG timing during gait showed significant differences in the mean onset of the gastrocnemius between subjects with CP and ITW, but there was considerable overlap. More consistent differences were found during active and active-resisted knee extension while sitting. Mean values for gastrocnemius EMG timing recorded as a percentage of duration of quadriceps EMG while sitting were 0 and 0.4% for controls, 0 and 3.9% for ITW subjects, and 84.3% and 93.4% for CP subjects. Patterns of EMG timing of the quadriceps and gastrocnemius during knee extension while sitting can help to differentiate patients with mild diplegic CP from those with ITW.

    View details for Web of Science ID 000082295100025

    View details for PubMedID 10488875

  • The motor unit in cerebral palsy DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J., McGill, K. C. 1998; 40 (4): 270-277

    View details for Web of Science ID 000073310200009

    View details for PubMedID 9593500

  • Postural balance measurements for children and adolescents JOURNAL OF ORTHOPAEDIC RESEARCH Wolff, D. R., Rose, J., Jones, V. K., Bloch, D. A., Oehlert, J. W., Gamble, J. G. 1998; 16 (2): 271-275

    Abstract

    Measurements of standing balance were determined for 92 children and adolescents, 5-18 years old, while they stood on a force plate with eyes open or eyes closed. The measurements included center-of-pressure calculations for path length per second, average radial displacement, anterior-posterior and mediolateral amplitudes, area per second, mean frequency of sway, Brownian random motion measure of short-term diffusion coefficient, and long-term scaling exponent. All balance parameters improved from youngest to oldest subjects, and the parameters improved when measured with the subjects' eyes open compared with closed. The mean values for data from three trials varied by only 5% when compared with the mean values from 10 trials. Data from this study suggest that force-plate center-of-pressure data can be used to determine differences in standing balance between children and adolescents of different ages and those with movement and balance abnormalities.

    View details for Web of Science ID 000073905500014

    View details for PubMedID 9621902

  • MUSCLE PATHOLOGY AND CLINICAL MEASURES OF DISABILITY IN CHILDREN WITH CEREBRAL-PALSY JOURNAL OF ORTHOPAEDIC RESEARCH Rose, J., Haskell, W. L., Gamble, J. G., Hamilton, R. L., Brown, D. A., Rinsky, L. 1994; 12 (6): 758-768

    Abstract

    We performed a histologic and morphometric study of spastic muscle from 10 children with diplegic cerebral palsy, comparing muscle structure with the gait parameters of energy expenditure index and dynamic electromyography. Variations in fiber area within and between fiber types were increased significantly in children with cerebral palsy. In each of the control subjects, the combined coefficient of variation for type-1 and type-2 fiber area was less than 25% and the average was 17%; in the subjects with cerebral palsy, the combined coefficient of variation was more than 25% and the average was 36% (p < or = 0.004). The average difference between the mean area of type-1 and type-2 fibers was 26.7 +/- 18.9% for subjects with cerebral palsy and 4.2 +/- 2.4% for control subjects (p < or = 0.004). There was a 67% predominance of one fiber type in the subjects with cerebral palsy compared with a 55% predominance in the control subjects (p < or = 0.03). The difference between the total area of type-1 and type-2 fibers was 57% in the subjects with cerebral palsy and 17% in the control subjects (p < or = 0.002). There was a significant correlation between the combined coefficient of variation of fiber area and the energy expenditure index (r = 0.77, p < or = 0.03). The difference between the mean area of type-1 and type-2 fibers correlated with prolongation of electromyographic activity (r = 0.69, p < or = 0.05). No abnormalities in fiber ultrastructure were found in the subjects with cerebral palsy. Children with cerebral palsy had abnormal variation in the size of muscle fibers and altered distribution of fiber types. The values for variation in fiber area correlated with the energy expenditure index and with prolongation of electromyographic activity during walking.

    View details for Web of Science ID A1994PW53900002

    View details for PubMedID 7983551

  • A COMPARISON OF OXYGEN PULSE AND RESPIRATORY EXCHANGE RATIO IN CEREBRAL-PALSIED AND NONDISABLED CHILDREN ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION Rose, J., Haskell, W. L., Gamble, J. G. 1993; 74 (7): 702-705

    Abstract

    Energy expended while walking is increased for children with cerebral palsy compared to nondisabled children. This study compared oxygen uptake, oxygen pulse, and the respiratory exchange ratio (RER) in children with cerebral palsy and nondisabled children walking on a treadmill. Resting oxygen uptake and oxygen pulse values were not different in the two groups. At a given walking speed, oxygen uptake, oxygen pulse, and RER were higher for subjects with cerebral palsy. At a given level of submaximal oxygen uptake, oxygen pulse and RER values were not different in subjects with cerebral palsy compared to nondisabled children. It was concluded that the cardiorespiratory response to walking at submaximal level of work is not significantly different for children with cerebral palsy.

    View details for Web of Science ID A1993LM07900006

    View details for PubMedID 8328890

  • THE ENERGY-EXPENDITURE INDEX - A METHOD TO QUANTITATE AND COMPARE WALKING ENERGY-EXPENDITURE FOR CHILDREN AND ADOLESCENTS JOURNAL OF PEDIATRIC ORTHOPAEDICS Rose, J., Gamble, J. G., Lee, J., LEE, R., Haskell, W. L. 1991; 11 (5): 571-578

    Abstract

    We used heart rate and walking speed to calculate an energy expenditure index (EEI), the ratio of heart rate per meter walked, for 102 normal subjects, age 6-18 years. Heart rate was measured at self-selected slow, comfortable, and fast walking speeds on the floor and on a motor-driven treadmill. At slow walking speeds (37 +/- 10 m/min) the EEI was elevated (0.71 +/- 0.32 beats/m), indicating poor economy. At comfortable speeds (70 +/- 11 m/min) the EEI values decreased to the maximum economy (0.47 +/- 0.13 beats/m). At fast speeds (101 +/- 13 m/min), the EEI increased (0.61 +/- 0.17 beats/m), indicating poor economy relative to comfortable speeds. A graph of the EEI versus walking speed provides a way to evaluate and compare energy expenditure in a clinical setting.

    View details for Web of Science ID A1991GD03600002

    View details for PubMedID 1918341

  • ENERGY-EXPENDITURE INDEX OF WALKING FOR NORMAL-CHILDREN AND FOR CHILDREN WITH CEREBRAL-PALSY DEVELOPMENTAL MEDICINE AND CHILD NEUROLOGY Rose, J., Gamble, J. G., Burgos, A., Medeiros, J., Haskell, W. L. 1990; 32 (4): 333-340

    Abstract

    Energy expenditure indices (EEI) based on oxygen uptake and heart rate were used to compare the economy of walking at various speeds by normal and cerebral-palsied children. At low walking speeds, EEI values were high, indicating poor economy. At higher speeds the EEI values decreased until a range of maximum economy was reached. For normal children who were capable of walking beyond this range at higher speeds, the EEI increased again. This pattern was noted for both oxygen-uptake and heart-rate indices. Mean EEI values based on oxygen uptake and heart rate for normal children were significantly lower and occurred at faster walking speeds than values for children with cerebral palsy. EEI based on either oxygen uptake or heart rate can be used clinically to provide objective information to help evaluate the influence on gait function of surgical intervention, ambulatory aids or orthotics.

    View details for Web of Science ID A1990CV23200008

    View details for PubMedID 2332124

  • ENERGY-COST OF WALKING IN NORMAL-CHILDREN AND IN THOSE WITH CEREBRAL-PALSY - COMPARISON OF HEART-RATE AND OXYGEN-UPTAKE JOURNAL OF PEDIATRIC ORTHOPAEDICS Rose, J., Gamble, J. G., Medeiros, J., Burgos, A., Haskell, W. L. 1989; 9 (3): 276-279

    Abstract

    The rate of oxygen uptake can be used to assess energy expenditure during walking, but the necessary instrumentation is cumbersome, expensive, and usually unavailable in the clinical setting. Heart rate is an easily measured parameter, but its use as an index of energy expenditure in children has not been validated previously. We found that the relationship between oxygen uptake and heart rate was linear throughout a wide range of walking speeds for both children with cerebral palsy and normal children. There was no significant difference between the slope or the gamma-intercept of the lines for the two groups. These findings validate the use of heart rate as an index of energy expenditure for normal children and for children with cerebral palsy.

    View details for Web of Science ID A1989U380200004

    View details for PubMedID 2723046

Stanford Medicine Resources: