Professional Education

  • Bachelor of Science, Tufts University (1996)
  • Doctor of Philosophy, University of California Santa Cruz (2009)

Stanford Advisors


Journal Articles

  • An index to assess the health and benefits of the global ocean NATURE Halpern, B. S., Longo, C., Hardy, D., McLeod, K. L., Samhouri, J. F., Katona, S. K., Kleisner, K., Lester, S. E., O'Leary, J., Ranelletti, M., Rosenberg, A. A., Scarborough, C., Selig, E. R., Best, B. D., Brumbaugh, D. R., Chapin, F. S., Crowder, L. B., Daly, K. L., Doney, S. C., Elfes, C., Fogarty, M. J., Gaines, S. D., Jacobsen, K. I., Karrer, L. B., Leslie, H. M., Neeley, E., Pauly, D., Polasky, S., Ris, B., St Martin, K., Stone, G. S., Sumaila, U. R., Zeller, D. 2012; 488 (7413): 615-?


    The ocean plays a critical role in supporting human well-being, from providing food, livelihoods and recreational opportunities to regulating the global climate. Sustainable management aimed at maintaining the flow of a broad range of benefits from the ocean requires a comprehensive and quantitative method to measure and monitor the health of coupled human–ocean systems. We created an index comprising ten diverse public goals for a healthy coupled human–ocean system and calculated the index for every coastal country. Globally, the overall index score was 60 out of 100 (range 36–86), with developed countries generally performing better than developing countries, but with notable exceptions. Only 5% of countries scored higher than 70, whereas 32% scored lower than 50. The index provides a powerful tool to raise public awareness, direct resource management, improve policy and prioritize scientific research.

    View details for DOI 10.1038/nature11397

    View details for Web of Science ID 000308095100048

    View details for PubMedID 22895186

  • Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES van Woesik, R., Franklin, E. C., O'Leary, J., McClanahan, T. R., Klaus, J. S., Budd, A. F. 2012; 279 (1737): 2448-2456


    The risk of global extinction of reef-building coral species is increasing. We evaluated extinction risk using a biological trait-based resiliency index that was compared with Caribbean extinction during the Plio-Pleistocene, and with extinction risk determined by the International Union for Conservation of Nature (IUCN). Through the Plio-Pleistocene, the Caribbean supported more diverse coral assemblages than today and shared considerable overlap with contemporary Indo-Pacific reefs. A clear association was found between extant Plio-Pleistocene coral genera and our positive resilience scores. Regional extinction in the past and vulnerability in the present suggests that Pocillopora, Stylophora and foliose Pavona are among the most susceptible taxa to local and regional isolation. These same taxa were among the most abundant corals in the Caribbean Pliocene. Therefore, a widespread distribution did not equate with immunity to regional extinction. The strong relationship between past and present vulnerability suggests that regional extinction events are trait-based and not merely random episodes. We found several inconsistencies between our data and the IUCN scores, which suggest a need to critically re-examine what constitutes coral vulnerability.

    View details for DOI 10.1098/rspb.2011.2621

    View details for Web of Science ID 000303888500022

    View details for PubMedID 22337694

  • Distributions of Indo-Pacific lionfishes Pterois spp. in their native ranges: implications for the Atlantic invasion MARINE ECOLOGY PROGRESS SERIES Kulbicki, M., Beets, J., Chabanet, P., Cure, K., Darling, E., Floeter, S. R., Galzin, R., Green, A., Harmelin-Vivien, M., Hixon, M., Letourneur, Y., de Loma, T. L., McClanahan, T., McIlwain, J., Moutham, G., Myers, R., O'Leary, J. K., Planes, S., Vigliola, L., Wantiez, L. 2012; 446: 189-205

    View details for DOI 10.3354/meps09442

    View details for Web of Science ID 000301323600014

  • Indo-Pacific lionfish are larger and more abundant on invaded reefs: a comparison of Kenyan and Bahamian lionfish populations BIOLOGICAL INVASIONS Darling, E. S., Green, S. J., O'Leary, J. K., Cote, I. M. 2011; 13 (9): 2045-2051
  • Trophic cascades result in large-scale coralline algae loss through differential grazer effects ECOLOGY O'Leary, J. K., McClanahan, T. R. 2010; 91 (12): 3584-3597


    Removal of predators can have strong indirect effects on primary producers through trophic cascades. Crustose coralline algae (CCA) are major primary producers worldwide that may be influenced by predator removal through changes in grazer composition and biomass. CCA have been most widely studied in Caribbean and temperate reefs, where cover increases with increasing grazer biomass due to removal of competitive fleshy algae. However, each of these systems has one dominant grazer type, herbivorous fishes or sea urchins, which may not be functionally equivalent. Where fishes and sea urchins co-occur, fishing can result in a phase shift in the grazing community with subsequent effects on CCA and other substrata. Kenyan reefs have herbivorous fishes and sea urchins, providing an opportunity to determine the relative impacts of each grazer type and evaluate potential human-induced trophic cascades. We hypothesized that fish benefit CCA, abundant sea urchins erode CCA, and that fishing indirectly reduces CCA cover by removing sea urchin predators. We used closures and fished reefs as a large-scale, long-term natural experiment to assess how fishing and resultant changes in communities affect CCA abundance. We used a short-term caging experiment to directly test the effects of grazing on CCA. CCA cover declined with increasing fish and sea urchin abundance, but the negative impact of sea urchin grazing was much stronger than that of fishes. Abundant sea urchins reduced the CCA growth rate to almost zero and prevented CCA accumulation. A warming event (El Niño Southern Oscillation, ENSO) occurred during the 18-year study and had a strong but short-term positive effect on CCA cover. However, the effect of the ENSO on CCA was lower in magnitude than the effect of sea urchin grazing. We compare our results with worldwide literature on bioerosion by fishes and sea urchins. Grazer influence depends on whether benefits of fleshy algae removal outweigh costs of grazer-induced bioerosion. However, the cost-benefit ratio for CCA appears to change with grazer type, grazer abundance, and environment. In Kenya, predator removal leads to a trophic cascade that is expected to reduce net calcification of reefs and therefore reduce reef stability, growth, and resilience.

    View details for Web of Science ID 000285635100020

    View details for PubMedID 21302830

  • Indirect effects of fishing: reductions in crustose coralline algae suppress coral recruitment Coral Reefs O'Leary, J. K., Potts, D., Braga, J., McClanahan, T. R. 2010

Stanford Medicine Resources: