Bio

Academic Appointments


Professional Education


  • M.D., Ph.D., Washington University Sch of Med, Medicine and Molecular Biology (1991)
  • Sc.B., Brown University, Biochemistry (1981)

Research & Scholarship

Current Research and Scholarly Interests


The overarching goal of the research in my lab is to understand how signal transduction pathways regulate morphogenesis - the emergence of spatial organization - during development. Development requires that cells differentiate to acquire the necessary complement of cell fates, and that they adopt the structure required to carry out their functions. In multicellular organisms, signal transduction is essential to these processes, yet while our understanding of how signals regulate gene expression is relatively advanced, our understanding of how signals direct the acquisition of specific shapes and forms is less advanced.

Our major project is to investige a pathway that controls the polarity of epithelial cells within the plane of the epithelium. Epithelia delimit compartments of differing composition, and are necessarily specialized on their apical and basal surfaces. In addition, many epithelial cells are overtly polarized along an axis orthogonal to the apical-basal axis, in a direction defined by the organization of the tissue or organ [referred to as planar cell polarity (PCP)]. In effect, therefore, cells acquire a global “knowledge” of which way is which, much as a compass tells us direction on the earth’s surface. Some examples include the specialized hair cells of the mammalian cochlea, that display a spectacularly polarized organization of kinocilia and stereocilia on their apical surfaces, the dynamic ciliated cells of the tracheal and reproductive tract epithelia, and cells in the gastrulating vertebrate embryo that display polarized migration and intercalation behaviors. In each case, PCP is critical to the function of these cells and tissues, and errors in the signaling system controlling PCP lead to human diseases and developmental defects, including congenital deafness, neural tube closure defects and cardiac outflow tract anomalies. The primary goal of my work on PCP has been to elucidate, at molecular and cell biological levels, the nature of the signals that induce subcellular asymmetry, and how cells then respond to this molecular asymmetry to orient their cytoskeletons.

We employ two principal model systems in our work. Because of the availability of remarkably powerful genetic, molecular and cell biological tools, we use the fruitfly, Drosophila melanogaster, as our primary model for investigating the fundamental mechanisms of PCP signaling. Importantly, flies have proven to be a remarkably well-conserved model for the molecular mechanisms of signaling events that direct vertebrate development. More recently, we have taken advantage of our experience in studying these mechanisms to extend our work to vertebrates, using primarily the mouse. To date, our work on vertebrates, along with the work of others, indicates a substantial conservation, but also reveals numerous differences and variations deserving of further study.

Teaching

2013-14 Courses


Graduate and Fellowship Programs


Publications

Journal Articles


  • Microtubules Enable the Planar Cell Polarity of Airway Cilia CURRENT BIOLOGY Vladar, E. K., Bayly, R. D., Sangoram, A. M., Scott, M. P., Axelrod, J. D. 2012; 22 (23): 2203-2212

    Abstract

    Airway cilia must be physically oriented along the longitudinal tissue axis for concerted, directional motility that is essential for proper mucociliary clearance.We show that planar cell polarity (PCP) signaling specifies directionality and orients respiratory cilia. Within all airway epithelial cells, a conserved set of PCP proteins shows interdependent, asymmetric junctional localization; nonautonomous signaling coordinates polarization between cells; and a polarized microtubule (MT) network is likely required for asymmetric PCP protein localization. We find that basal bodies dock after polarity of PCP proteins is established and are polarized nearly simultaneously, and that refinement of basal body/cilium orientation continues during airway epithelial development. Unique to mature multiciliated cells, we identify PCP-regulated, planar polarized MTs that originate from basal bodies and interact, via their plus ends, with membrane domains associated with the PCP proteins Frizzled and Dishevelled. Disruption of MTs leads to misoriented cilia.A conserved PCP pathway orients airway cilia by communicating polarity information from asymmetric membrane domains at the apical junctions, through MTs, to orient the MT and actin-based network of ciliary basal bodies below the apical surface.

    View details for DOI 10.1016/j.cub.2012.09.046

    View details for Web of Science ID 000312115300016

    View details for PubMedID 23122850

  • Planar Polarized Protrusions Break the Symmetry of EGFR Signaling during Drosophila Bract Cell Fate Induction DEVELOPMENTAL CELL Peng, Y., Han, C., Axelrod, J. D. 2012; 23 (3): 507-518

    Abstract

    Secreted signaling molecules typically float in the outer leaflet of the plasma membrane or freely diffuse away from the signaling cell, suggesting that a signal should be sensed equally by all neighboring cells. However, we demonstrate that Spitz (Spi)-mediated epidermal growth factor receptor (EGFR) signaling is spatially biased to selectively determine the induction of a single bract cell on the proximal side of each mechanosensory organ on the Drosophila leg. Dynamic and oriented cellular protrusions emanating from the socket cell, the source of Spi, robustly favor the Spi/EGFR signaling response in a particular cell among equally competent neighbors. We propose that these protrusive structures enhance signaling by increasing contact between the signaling and responding cells. The planar polarized direction of the protrusions determines the direction of the signaling outcome. This asymmetric cell signaling serves as a developmental mechanism to generate spatially patterned cell fates.

    View details for DOI 10.1016/j.devcel.2012.07.016

    View details for Web of Science ID 000308776400009

    View details for PubMedID 22921201

  • Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation NATURE CELL BIOLOGY Stubbs, J. L., Vladar, E. K., Axelrod, J. D., Kintner, C. 2012; 14 (2): 140-147

    Abstract

    Multiciliate cells function prominently in the respiratory system, brain ependyma and female reproductive tract to produce vigorous fluid flow along epithelial surfaces. These specialized cells form during development when epithelial progenitors undergo an unusual form of ciliogenesis, in which they assemble and project hundreds of motile cilia. Notch inhibits multiciliate cell formation in diverse epithelia, but how progenitors overcome lateral inhibition and initiate multiciliate cell differentiation is unknown. Here we identify a coiled-coil protein, termed multicilin, which is regulated by Notch and highly expressed in developing epithelia where multiciliate cells form. Inhibiting multicilin function specifically blocks multiciliate cell formation in Xenopus skin and kidney, whereas ectopic expression induces the differentiation of multiciliate cells in ectopic locations. Multicilin localizes to the nucleus, where it directly activates the expression of genes required for multiciliate cell formation, including foxj1 and genes mediating centriole assembly. Multicilin is also necessary and sufficient to promote multiciliate cell differentiation in mouse airway epithelial cultures. These findings indicate that multicilin initiates multiciliate cell differentiation in diverse tissues, by coordinately promoting the transcriptional changes required for motile ciliogenesis and centriole assembly.

    View details for DOI 10.1038/ncb2406

    View details for Web of Science ID 000300332500008

    View details for PubMedID 22231168

  • Cell packing influences planar cell polarity signaling PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Ma, D., Amonlirdviman, K., Raffard, R. L., Abate, A., Tomlin, C. J., Axelrod, J. D. 2008; 105 (48): 18800-18805

    Abstract

    Some epithelial cells display asymmetry along an axis orthogonal to the apical-basal axis, referred to as planar cell polarity (PCP). A Frizzled-mediated feedback loop coordinates PCP between neighboring cells, and the cadherin Fat transduces a global directional cue that orients PCP with respect to the tissue axes. The feedback loop can propagate polarity across clones of cells that lack the global directional signal, although this polarity propagation is error prone. Here, we show that, in the Drosophila wing, a combination of cell geometry and nonautonomous signaling at clone boundaries determines the correct or incorrect polarity propagation in clones that lack Fat mediated global directional information. Pattern elements, such as veins, and sporadic occurrences of irregular geometry are obstacles to polarity propagation. Hence, in the wild type, broad distribution of the global directional cue combines with a local feedback mechanism to overcome irregularities in cell packing geometry during PCP signaling.

    View details for DOI 10.1073/pnas.0808868105

    View details for Web of Science ID 000261489100036

    View details for PubMedID 19022903

  • Asymmetric homotypic interactions of the atypical cadherin Flamingo mediate intercellular polarity signaling CELL Chen, W., Antic, D., Matis, M., Logan, C. Y., Povelones, M., Anderson, G. A., Nusse, R., Axelrod, J. D. 2008; 133 (6): 1093-1105

    Abstract

    Acquisition of planar cell polarity (PCP) in epithelia involves intercellular communication, during which cells align their polarity with that of their neighbors. The transmembrane proteins Frizzled (Fz) and Van Gogh (Vang) are essential components of the intercellular communication mechanism, as loss of either strongly perturbs the polarity of neighboring cells. How Fz and Vang communicate polarity information between neighboring cells is poorly understood. The atypical cadherin, Flamingo (Fmi), is implicated in this process, yet whether Fmi acts permissively as a scaffold or instructively as a signal is unclear. Here, we provide evidence that Fmi functions instructively to mediate Fz-Vang intercellular signal relay, recruiting Fz and Vang to opposite sides of cell boundaries. We propose that two functional forms of Fmi, one of which is induced by and physically interacts with Fz, bind each other to create cadherin homodimers that signal bidirectionally and asymmetrically, instructing unequal responses in adjacent cell membranes to establish molecular asymmetry.

    View details for DOI 10.1016/j.cell.2008.04.048

    View details for Web of Science ID 000256693400023

    View details for PubMedID 18555784

  • Mathematical modeling of planar cell polarity to understand domineering nonautonomy SCIENCE Amonlirdviman, K., Khare, N. A., Tree, D. R., Chen, W. S., Axelrod, J. D., Tomlin, C. J. 2005; 307 (5708): 423-426

    Abstract

    Planar cell polarity (PCP) signaling generates subcellular asymmetry along an axis orthogonal to the epithelial apical-basal axis. Through a poorly understood mechanism, cell clones that have mutations in some PCP signaling components, including some, but not all, alleles of the receptor frizzled, cause polarity disruptions of neighboring wild-type cells, a phenomenon referred to as domineering nonautonomy. Here, a contact-dependent signaling hypothesis, derived from experimental results, is shown by reaction-diffusion, partial differential equation modeling and simulation to fully reproduce PCP phenotypes, including domineering nonautonomy, in the Drosophila wing. The sufficiency of this model and the experimental validation of model predictions reveal how specific protein-protein interactions produce autonomy or domineering nonautonomy.

    View details for DOI 10.1126/science.1105471

    View details for Web of Science ID 000226492300047

    View details for PubMedID 15662015

  • Absolute requirement of cholesterol binding for Hedgehog gradient formation in Drosophila. Biology open Ducuing, A., Mollereau, B., Axelrod, J. D., Vincent, S. 2013; 2 (6): 596-604

    Abstract

    How morphogen gradients are shaped is a major question in developmental biology, but remains poorly understood. Hedgehog (Hh) is a locally secreted ligand that reaches cells at a distance and acts as a morphogen to pattern the Drosophila wing and the vertebrate neural tube. The proper patterning of both structures relies on the precise control over the slope of Hh activity gradient. A number of hypotheses have been proposed to explain Hh movement and hence graded activity of Hh. A crux to all these models is that the covalent binding of cholesterol to Hh N-terminus is essential to achieve the correct slope of the activity gradient. Still, the behavior of cholesterol-free Hh (Hh-N) remains controversial: cholesterol has been shown to either increase or restrict Hh range depending on the experimental setting. Here, in fly embryos and wing imaginal discs, we show that cholesterol-free Hh diffuses at a long-range. This unrestricted diffusion of cholesterol-free Hh leads to an absence of gradient while Hh signaling strength remains uncompromised. These data support a model where cholesterol addition restricts Hh diffusion and can transform a leveled signaling activity into a gradient. In addition, our data indicate that the receptor Patched is not able to sequester cholesterol-free Hh. We propose that a morphogen gradient does not necessarily stem from the active transfer of a poorly diffusing molecule, but can be achieved by the restriction of a highly diffusible ligand.

    View details for DOI 10.1242/bio.20134952

    View details for PubMedID 23789110

  • Remodeling a Tissue: Subtraction Adds Insight SCIENCE SIGNALING Axelrod, J. D. 2012; 5 (252)

    Abstract

    Sculpting a body plan requires both patterning of gene expression and translating that pattern into morphogenesis. Developmental biologists have made remarkable strides in understanding gene expression patterning, but despite a long history of fascination with the mechanics of morphogenesis, knowledge of how patterned gene expression drives the emergence of even simple shapes and forms has grown at a slower pace. The successful merging of approaches from cell biology, developmental biology, imaging, engineering, and mathematical and computational sciences is now accelerating progress toward a fuller and better integrated understanding of the forces shaping morphogenesis.

    View details for DOI 10.1126/scisignal.2003620

    View details for Web of Science ID 000311749700003

    View details for PubMedID 23193158

  • A Mathematical Model to Study the Dynamics of Epithelial Cellular Networks IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS Abate, A., Vincent, S., Dobbe, R., Silletti, A., Master, N., Axelrod, J. D., Tomlin, C. J. 2012; 9 (6): 1607-1620

    Abstract

    Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution, we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction).

    View details for DOI 10.1109/TCBB.2012.126

    View details for Web of Science ID 000312558400006

    View details for PubMedID 23221083

  • A universal analysis tool for the detection of asymmetric signal distribution in microscopic images DEVELOPMENTAL DYNAMICS Matis, M., Axelrod, J. D., Galic, M. 2012; 241 (8): 1301-1309

    Abstract

    Polarization of tissue is achieved by asymmetric distribution of proteins and organelles within individual cells. However, existing quantitative assays to measure this asymmetry in an automated and unbiased manner suffer from significant limitations.Here, we report a new way to assess protein and organelle localization in tissue based on correlative fluorescence analysis. As a proof of principle, we successfully characterized planar cell polarity dependent asymmetry in developing Drosophila melanogaster tissues on the single cell level using fluorescence cross-correlation.Systematic modulation of signal strength and distribution show that fluorescence cross-correlation reliably detects asymmetry over a broad parameter space. The novel method described here produces robust, rapid, and unbiased measurement of biometrical properties of cell components in live tissue that is readily applicable in other model systems.

    View details for DOI 10.1002/dvdy.23818

    View details for Web of Science ID 000306490100007

    View details for PubMedID 22689329

  • Nuclear localization of Prickle2 is required to establish cell polarity during early mouse embryogenesis DEVELOPMENTAL BIOLOGY Tao, H., Inoue, K., Kiyonari, H., Bassuk, A. G., Axelrod, J. D., Sasaki, H., Aizawa, S., Ueno, N. 2012; 364 (2): 138-148

    Abstract

    The establishment of trophectoderm (TE) manifests as the formation of epithelium, and is dependent on many structural and regulatory components that are commonly found and function in many epithelial tissues. However, the mechanism of TE formation is currently not well understood. Prickle1 (Pk1), a core component of the planar cell polarity (PCP) pathway, is essential for epiblast polarization before gastrulation, yet the roles of Pk family members in early mouse embryogenesis are obscure. Here we found that Pk2(-/-) embryos died at E3.0-3.5 without forming the blastocyst cavity and not maintained epithelial integrity of TE. These phenotypes were due to loss of the apical-basal (AB) polarity that underlies the asymmetric redistribution of microtubule networks and proper accumulation of AB polarity components on each membrane during compaction. In addition, we found GTP-bound active form of nuclear RhoA was decreased in Pk2(-/-) embryos during compaction. We further show that the first cell fate decision was disrupted in Pk2(-/-) embryos. Interestingly, Pk2 localized to the nucleus from the 2-cell to around the 16-cell stage despite its cytoplasmic function previously reported. Inhibiting farnesylation blocked Pk2's nuclear localization and disrupted AB cell polarity, suggesting that Pk2 farnesylation is essential for its nuclear localization and function. The cell polarity phenotype was efficiently rescued by nuclear but not cytoplasmic Pk2, demonstrating the nuclear localization of Pk2 is critical for its function.

    View details for DOI 10.1016/j.ydbio.2012.01.025

    View details for Web of Science ID 000301827500005

    View details for PubMedID 22333836

  • Asymmetric Protein Localization in Planar Cell Polarity: Mechanisms, Puzzles, and Challenges PLANAR CELL POLARITY DURING DEVELOPMENT Peng, Y., Axelrod, J. D. 2012; 101: 33-53

    Abstract

    The polarization of epithelial cells along an axis orthogonal to their apical-basal axis is increasingly recognized for roles in a variety of developmental events and physiological functions. While now studied in many model organisms, mechanistic understanding is rooted in intensive investigations of planar cell polarity (PCP) in Drosophila. Consensus has emerged that two molecular modules, referred to here as the global and core modules, operate upstream of effector proteins to produce morphological PCP. Proteins of the core module develop subcellular asymmetry, accumulating in two groups on opposite sides of cells, consistent with proposed functions in producing cell polarity and in communicating that polarity between neighboring cells. Less clear are the molecular and cell biological mechanisms underlying core module function in the generation and communication of subcellular asymmetry and the relationship between the global and the core modules. In this review, we discuss these two unresolved questions, highlighting important studies and potentially enlightening avenues for further investigation. It is likely that results from Drosophila will continue to inform our views of the growing list of examples of PCP in vertebrate systems.

    View details for DOI 10.1016/B978-0-12-394592-1.00002-8

    View details for Web of Science ID 000314133400003

    View details for PubMedID 23140624

  • Modeling the control of planar cell polarity WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE Axelrod, J. D., Tomlin, C. J. 2011; 3 (5): 588-605

    Abstract

    A growing list of medically important developmental defects and disease mechanisms can be traced to disruption of the planar cell polarity (PCP) pathway. The PCP system polarizes cells in epithelial sheets along an axis orthogonal to their apical-basal axis. Studies in the fruitfly, Drosophila, have suggested that components of the PCP signaling system function in distinct modules, and that these modules and the effector systems with which they interact function together to produce emergent patterns. Experimental methods allow the manipulation of individual PCP signaling molecules in specified groups of cells; these interventions not only perturb the polarization of the targeted cells at a subcellular level, but also perturb patterns of polarity at the multicellular level, often affecting nearby cells in characteristic ways. These kinds of experiments should, in principle, allow one to infer the architecture of the PCP signaling system, but the relationships between molecular interactions and tissue-level pattern are sufficiently complex that they defy intuitive understanding. Mathematical modeling has been an important tool to address these problems. This article explores the emergence of a local signaling hypothesis, and describes how a local intercellular signal, coupled with a directional cue, can give rise to global pattern. We will discuss the critical role mathematical modeling has played in guiding and interpreting experimental results, and speculate about future roles for mathematical modeling of PCP. Mathematical models at varying levels of inhibition have and are expected to continue contributing in distinct ways to understanding the regulation of PCP signaling.

    View details for DOI 10.1002/wsbm.138

    View details for Web of Science ID 000294351300006

    View details for PubMedID 21755606

  • Pointing in the right direction: new developments in the field of planar cell polarity NATURE REVIEWS GENETICS Bayly, R., Axelrod, J. D. 2011; 12 (6): 385-391

    Abstract

    Planar cell polarity (PCP) is observed in an array of developmental processes that involve collective cell movement and tissue organization, and its disruption can lead to severe developmental defects. Recent studies in flies and vertebrates have identified new functions for PCP as well as new signalling components, and have proposed new mechanistic models. However, despite this progress, the search to simplify principles of understanding continues and important mechanistic uncertainties still pose formidable challenges.

    View details for DOI 10.1038/nrg2956

    View details for Web of Science ID 000290714000009

    View details for PubMedID 21502960

  • Versatile spectral methods for point set matching PATTERN RECOGNITION LETTERS Silletti, A., Abate, A., Axelrod, J. D., Tomlin, C. J. 2011; 32 (5): 731-739
  • Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans AMERICAN JOURNAL OF HUMAN GENETICS Tao, H., Manak, J. R., Sowers, L., Mei, X., Kiyonari, H., Abe, T., Dandaleh, N. S., Yang, T., Wu, S., Chen, S., Fox, M. H., Gurnett, C., Montine, T., Bird, T., Shaffer, L. G., Rosenfeld, J. A., McConne, J., Madan-Khetarpal, S., Berry-Kravis, E., Griesbach, H., Saneto, R. P., Scott, M. P., Antic, D., Reed, J., Boland, R., Ehaideb, S. N., El-Shanti, H., Mahajan, V. B., Ferguson, P. J., Axelrod, J. D., Lehesjoki, A., Fritzsch, B., Slusarski, D. C., Wemmie, J., Ueno, N., Bassuk, A. G. 2011; 88 (2): 138-149

    Abstract

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution.

    View details for DOI 10.1016/j.ajhg.2010.12.012

    View details for Web of Science ID 000287684100002

    View details for PubMedID 21276947

  • Delivering the Lateral Inhibition Punchline: It's All About the Timing SCIENCE SIGNALING Axelrod, J. D. 2010; 3 (145)

    Abstract

    Experimental and theoretical biologists have long been fascinated with the emergence of self-organizing patterns in developing organisms, and much attention has focused on Notch-mediated lateral inhibition. Within sheets of cells that may adopt either of two possible cell fates, lateral inhibition establishes patterns through the activity of a negative intercellular feedback loop involving the receptor, Notch, and its ligands Delta or Serrate. Despite a long history of intensive study in Drosophila, where the mechanism was first described, as well as in other organisms, new work continues to yield important insights. Mathematical modeling, combined with biological analyses, has now shed light on two features of the process: how antagonistic and activating ligand-receptor interactions work together to accelerate inhibition and ensure fidelity, and how filopodial dynamics contribute to the observed pattern refinement and spacing.

    View details for DOI 10.1126/scisignal.3145pe38

    View details for Web of Science ID 000283733600002

    View details for PubMedID 20978236

  • Planar Cell Polarity Enables Posterior Localization of Nodal Cilia and Left-Right Axis Determination during Mouse and Xenopus Embryogenesis PLOS ONE Antic, D., Stubbs, J. L., Suyama, K., Kintner, C., Scott, M. P., Axelrod, J. D. 2010; 5 (2)

    Abstract

    Left-right asymmetry in vertebrates is initiated in an early embryonic structure called the ventral node in human and mouse, and the gastrocoel roof plate (GRP) in the frog. Within these structures, each epithelial cell bears a single motile cilium, and the concerted beating of these cilia produces a leftward fluid flow that is required to initiate left-right asymmetric gene expression. The leftward fluid flow is thought to result from the posterior tilt of the cilia, which protrude from near the posterior portion of each cell's apical surface. The cells, therefore, display a morphological planar polarization. Planar cell polarity (PCP) is manifested as the coordinated, polarized orientation of cells within epithelial sheets, or as directional cell migration and intercalation during convergent extension. A set of evolutionarily conserved proteins regulates PCP. Here, we provide evidence that vertebrate PCP proteins regulate planar polarity in the mouse ventral node and in the Xenopus gastrocoel roof plate. Asymmetric anterior localization of VANGL1 and PRICKLE2 (PK2) in mouse ventral node cells indicates that these cells are planar polarized by a conserved molecular mechanism. A weakly penetrant Vangl1 mutant phenotype suggests that compromised Vangl1 function may be associated with left-right laterality defects. Stronger functional evidence comes from the Xenopus GRP, where we show that perturbation of VANGL2 protein function disrupts the posterior localization of motile cilia that is required for leftward fluid flow, and causes aberrant expression of the left side-specific gene Nodal. The observation of anterior-posterior PCP in the mouse and in Xenopus embryonic organizers reflects a strong evolutionary conservation of this mechanism that is important for body plan determination.

    View details for DOI 10.1371/journal.pone.0008999

    View details for Web of Science ID 000274207200003

    View details for PubMedID 20126399

  • Studies of epithelial PCP. Seminars in cell & developmental biology Axelrod, J. D. 2009; 20 (8): 956-?

    View details for DOI 10.1016/j.semcdb.2009.08.002

    View details for PubMedID 19665569

  • Progress and challenges in understanding planar cell polarity signaling SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY Axelrod, J. D. 2009; 20 (8): 964-971

    Abstract

    During development, epithelial cells in some tissues acquire a polarity orthogonal to their apical-basal axis. This polarity, referred to as planar cell polarity (PCP), or tissue polarity, is essential for the normal physiological function of many epithelia. Early studies of PCP focused on insect epithelia (Lawrence, 1966 [1]), and the earliest genetic analyses were carried out in Drosophila (Held et al., 1986; Gubb and Garcia-Bellido, 1982 [2,3]). Indeed, most of our mechanistic understanding of PCP derives from the ongoing use of Drosophila as a model system. However, a range of medically important developmental defects and physiological processes are under the control of PCP mechanisms that appear to be at least partially conserved, driving considerable interest in studying PCP both in Drosophila and in vertebrate model systems. Here, I present a model of the PCP signaling mechanism based on studies in Drosophila. I highlight two areas in which our understanding is deficient, and which lead to current confusion in the literature. Future studies that shed light on these areas will substantially enhance our understanding of the fascinating yet challenging problem of understanding the mechanisms that generate PCP.

    View details for DOI 10.1016/j.semcdb.2009.08.001

    View details for Web of Science ID 000274300800012

    View details for PubMedID 19665570

  • Planar Cell Polarity Signaling: The Developing Cell's Compass COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY Vladar, E. K., Antic, D., Axelrod, J. D. 2009; 1 (3)

    Abstract

    Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.

    View details for DOI 10.1101/cshperspect.a002964

    View details for Web of Science ID 000279879100006

    View details for PubMedID 20066108

  • Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-beta-catenin and Wnt-RhoA-Rac1 pathways JOURNAL OF CELL BIOLOGY Perez, V. A., Alastalo, T., Wu, J. C., Axelrod, J. D., Cooke, J. P., Amieva, M., Rabinovitch, M. 2009; 184 (1): 83-99

    Abstract

    Mutations in bone morphogenetic protein (BMP) receptor II (BMPRII) are associated with pulmonary artery endothelial cell (PAEC) apoptosis and the loss of small vessels seen in idiopathic pulmonary arterial hypertension. Given the low penetrance of BMPRII mutations, abnormalities in other converging signaling pathways may be necessary for disease development. We hypothesized that BMPRII supports normal PAEC function by recruiting Wingless (Wnt) signaling pathways to promote proliferation, survival, and motility. In this study, we report that BMP-2, via BMPRII-mediated inhibition of GSK3-beta, induces beta-catenin (beta-C) accumulation and transcriptional activity necessary for PAEC survival and proliferation. At the same time, BMP-2 mediates phosphorylated Smad1 (pSmad1) or, with loss of BMPRII, pSmad3-dependent recruitment of Disheveled (Dvl) to promote RhoA-Rac1 signaling necessary for motility. Finally, using an angiogenesis assay in severe combined immunodeficient mice, we demonstrate that both beta-C- and Dvl-mediated RhoA-Rac1 activation are necessary for vascular growth in vivo. These findings suggest that the recruitment of both canonical and noncanonical Wnt pathways is required in BMP-2-mediated angiogenesis.

    View details for DOI 10.1083/jcb.200806049

    View details for Web of Science ID 000262867000010

    View details for PubMedID 19139264

  • A Homozygous Mutation in Human PRICKLE1 Causes an Autosomal-Recessive Progressive Myoclonus Epilepsy-Ataxia Syndrome AMERICAN JOURNAL OF HUMAN GENETICS Bassuk, A. G., Wallace, R. H., Buhr, A., Buller, A. R., Afawi, Z., Shimojo, M., Miyata, S., Chen, S., Gonzalez-Alegre, P., Griesbach, H. L., Wu, S., Nashelsky, M., Vladar, E. K., Antic, D., Ferguson, P. J., Cirak, S., Voit, T., Scott, M. P., Axelrod, J. D., Gurnett, C., Daoud, A. S., Kivity, S., Neufeld, M. Y., Mazarib, A., Straussberg, R., Walid, S., Korczyn, A. D., Slusarski, D. C., Berkovic, S. F., El-Shanti, H. I. 2008; 83 (5): 572-581

    Abstract

    Progressive myoclonus epilepsy (PME) is a syndrome characterized by myoclonic seizures (lightning-like jerks), generalized convulsive seizures, and varying degrees of neurological decline, especially ataxia and dementia. Previously, we characterized three pedigrees of individuals with PME and ataxia, where either clinical features or linkage mapping excluded known PME loci. This report identifies a mutation in PRICKLE1 (also known as RILP for REST/NRSF interacting LIM domain protein) in all three of these pedigrees. The identified PRICKLE1 mutation blocks the PRICKLE1 and REST interaction in vitro and disrupts the normal function of PRICKLE1 in an in vivo zebrafish overexpression system. PRICKLE1 is expressed in brain regions implicated in epilepsy and ataxia in mice and humans, and, to our knowledge, is the first molecule in the noncanonical WNT signaling pathway to be directly implicated in human epilepsy.

    View details for DOI 10.1016/j.ajhg.2008.10.003

    View details for Web of Science ID 000261006900003

    View details for PubMedID 18976727

  • Dishevelled links basal body docking and orientation in ciliated epithelial cells TRENDS IN CELL BIOLOGY Vladar, E. K., Axelrod, J. D. 2008; 18 (11): 517-520

    Abstract

    Some epithelia contain cells with multiple motile cilia that beat in a concerted manner. New tools and experimental systems have facilitated molecular studies of cilium biogenesis and the coordinated planar polarization of cilia that leads to their concerted motility. A recent elegant study using embryonic frog epidermis demonstrates that Dishevelled, a key regulator of both the Wnt-beta-catenin and planar cell polarity pathways, controls both the docking and planar polarization of ciliary basal bodies.

    View details for DOI 10.1016/j.tcb.2008.08.004

    View details for Web of Science ID 000261074400001

    View details for PubMedID 18819800

  • Bad hair days for mouse PCP mutants NATURE CELL BIOLOGY Axelrod, J. D. 2008; 10 (11): 1251-1253

    View details for Web of Science ID 000260586700006

    View details for PubMedID 18978834

  • Hedgehog and Wingless stabilize but do not induce cell fate during Drosophila dorsal embryonic epidermal patterning DEVELOPMENT Vincent, S., Perrimon, N., Axelrod, J. D. 2008; 135 (16): 2767-2775

    Abstract

    A fundamental concept in development is that secreted molecules such as Wingless (Wg) and Hedgehog (Hh) generate pattern by inducing cell fate. By following markers of cellular identity posterior to the Wg- and Hh-expressing cells in the Drosophila dorsal embryonic epidermis, we provide evidence that neither Wg nor Hh specifies the identity of the cell types they pattern. Rather, they maintain pre-existing cellular identities that are otherwise unstable and progress stepwise towards a default fate. Wg and Hh therefore generate pattern by inhibiting specific switches in cell identity, showing that the specification and the patterning of a given cell are uncoupled. Sequential binary decisions without induction of cell identity give rise to both the groove cells and their posterior neighbors. The combination of independent progression of cell identity and arrest of progression by signals facilitates accurate patterning of an extremely plastic developing epidermis.

    View details for DOI 10.1242/dev.017814

    View details for Web of Science ID 000257922600010

    View details for PubMedID 18614578

  • Basal bodies, kinocilia and planar cell polarity NATURE GENETICS Axelrod, J. D. 2008; 40 (1): 10-11

    View details for DOI 10.1038/ng0108-10

    View details for Web of Science ID 000252118600005

    View details for PubMedID 18163128

  • An adjoint-based parameter identification algorithm applied to planar cell polarity signaling IEEE TRANSACTIONS ON AUTOMATIC CONTROL Raffard, R. L., Amonlirdviman, K., Axelrod, J. D., Tomlin, C. J. 2008: 109-121
  • Biology by numbers: mathematical modelling in developmental biology NATURE REVIEWS GENETICS Tomlin, C. J., Axelrod, J. D. 2007; 8 (5): 331-340

    Abstract

    In recent years, mathematical modelling of developmental processes has earned new respect. Not only have mathematical models been used to validate hypotheses made from experimental data, but designing and testing these models has led to testable experimental predictions. There are now impressive cases in which mathematical models have provided fresh insight into biological systems, by suggesting, for example, how connections between local interactions among system components relate to their wider biological effects. By examining three developmental processes and corresponding mathematical models, this Review addresses the potential of mathematical modelling to help understand development.

    View details for DOI 10.1038/nrg2098

    View details for Web of Science ID 000245906500013

    View details for PubMedID 17440530

  • Asymmetric distribution of Prickle-like 2 reveals an early underlying polarization of vestibular sensory epithelia in the inner ear JOURNAL OF NEUROSCIENCE Deans, M. R., Antic, D., Suyama, K., Scott, M. P., Axelrod, J. D., Goodrich, L. V. 2007; 27 (12): 3139-3147

    Abstract

    Vestibular hair cells have a distinct planar cell polarity (PCP) manifest in the morphology of their stereocilia bundles and the asymmetric localization of their kinocilia. In the utricle and saccule the hair cells are arranged in an orderly array about an abrupt line of reversal that separates fields of cells with opposite polarity. We report that the putative PCP protein Prickle-like 2 (Pk2) is distributed in crescents on the medial sides of vestibular epithelial cells before the morphological polarization of hair cells. Despite the presence of a line of polarity reversal, crescent position is not altered between hair cells of opposite polarity. Frizzled 6 (Fz6), a second PCP protein, is distributed opposite Pk2 along the lateral side of vestibular support cells. Similar to Pk2, the subcellular localization of Fz6 does not differ between cells located on opposite sides of the line of reversal. In addition, in Looptail/Van Gogh-like2 mutant mice Pk2 is distributed asymmetrically at embryonic day 14.5 (E14.5), but this localization is not coordinated between adjacent cells, and the crescents subsequently are lost by E18.5. Together, these results support the idea that a conserved PCP complex acts before stereocilia bundle development to provide an underlying polarity to all cells in the vestibular epithelia and that cells on either side of the line of reversal are programmed to direct the kinocilium in opposite directions with respect to the polarity axis defined by PCP protein distribution.

    View details for DOI 10.1523/JNEUROSCI.5151-06.2007

    View details for Web of Science ID 000245103700010

    View details for PubMedID 17376975

  • The Drosophila casein kinase I epsilon/delta Discs overgrown promotes cell survival via activation of DIAP1 expression DEVELOPMENTAL BIOLOGY Guan, J., Li, H., Rogulja, A., Axelrod, J. D., Cadigan, K. M. 2007; 303 (1): 16-28

    Abstract

    The proper number of cells in developing tissues is achieved by coordinating cell division with apoptosis. In Drosophila, the adult wing is derived from wing imaginal discs, which undergo a period of growth and proliferation during larval stages without much programmed cell death. In this report, we demonstrate that the Drosophila casein kinase Iepsilon/delta, known as Discs overgrown (Dco), is required for maintaining this low level of apoptosis. Expression of dco can suppress the apoptotic activity of Head involution defective (Hid) in the developing eye. Loss of dco in the wing disc results in a dramatic reduction in expression of the caspase inhibitor DIAP1 and a concomitant activation of caspases. The regulation of DIAP1 by Dco occurs by a post-transcriptional mechanism that is independent of hid. Mutant clones of dco are considerably smaller than controls even when apoptosis is inhibited, suggesting that Dco promotes cell division/growth in addition to its role in cell survival. The dco phenotype cannot be explained by defects Wingless (Wg) signaling. We propose that Dco coordinates tissue size by stimulating cell division/growth and blocking apoptosis via activation of DIAP1 expression.

    View details for DOI 10.1016/j.ydbio.2006.10.028

    View details for Web of Science ID 000244542800002

    View details for PubMedID 17134692

  • Cell shape in proliferating epithelia: A multifaceted problem CELL Axelrod, J. D. 2006; 126 (4): 643-645

    Abstract

    A specific and unexpected distribution pattern of polygonal cell shapes in proliferating epithelia is revealed in a recent study that combines mathematical modeling with experimental data (Gibson et. al., 2006). This pattern is conserved in epithelia from diverse species, suggesting that this distribution is a fundamental property of proliferating epithelial sheets.

    View details for DOI 10.1016/j.cell.2006.07.018

    View details for Web of Science ID 000240276700009

    View details for PubMedID 16923381

  • A WNTer wonderland in Snowbird DEVELOPMENT He, X., Axelrod, J. D. 2006; 133 (14): 2597-2603

    Abstract

    The Keystone Symposium on ;Wnt and beta-catenin signaling in development and disease' was held recently in Snowbird, UT, USA. Organized by Mariann Bienz and Hans Clevers, this meeting covered a wide range of topics, including Wnt protein biogenesis, Wnt receptors and signaling pathways, beta-catenin/Tcf complexes and gene expression, Wnt signaling in development, cancer, stem cell biology and regeneration, and therapeutics that target the Wnt/beta-catenin pathway.

    View details for DOI 10.1242/dev.02452

    View details for Web of Science ID 000238475500001

    View details for PubMedID 16794030

  • Automatic parameter identification via the adjoint method, with application to understanding planar cell polarity PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14 Raffard, R., Amonlirdviman, K., Axelrod, J. D., Tomlin, C. J. 2006: 13-18
  • Understanding biology by reverse engineering the control PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Tomlin, C. J., Axelrod, J. D. 2005; 102 (12): 4219-4220

    View details for DOI 10.1073/pnas.0500276102

    View details for Web of Science ID 000227854800001

    View details for PubMedID 15767568

  • D-2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9-2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways JOURNAL OF NEUROSCIENCE Kovoor, A., Seyffarth, P., Ebert, J., Barghshoon, S., Chen, C. K., Schwarz, S., Axelrod, J. D., Cheyette, B. N., Simon, M. I., Lester, H. A., Schwarz, J. 2005; 25 (8): 2157-2165

    Abstract

    Regulator of G-protein signaling 9-2 (RGS9-2), a member of the RGS family of G GTPase accelerating proteins, is expressed specifically in the striatum, which participates in antipsychotic-induced tardive dyskinesia and in levodopa-induced dyskinesia. We report that RGS9 knock-out mice develop abnormal involuntary movements when inhibition of dopaminergic transmission is followed by activation of D2-like dopamine receptors (DRs). These abnormal movements resemble drug-induced dyskinesia more closely than other rodent models. Recordings from striatal neurons of these mice establish that activation of D2-like DRs abnormally inhibits glutamate-elicited currents. We show that RGS9-2, via its DEP domain (for Disheveled, EGL-10, Pleckstrin homology), colocalizes with D2DRs when coexpressed in mammalian cells. Recordings from oocytes coexpressing D2DR or the m2 muscarinic receptor and G-protein-gated inward rectifier potassium channels show that RGS9-2, via its DEP domain, preferentially accelerates the termination of D2DR signals. Thus, alterations in RGS9-2 may be a key factor in the pathway leading from D2DRs to the side effects associated with the treatment both of psychoses and Parkinson's disease.

    View details for DOI 10.1523/JNEUROSCI.2840-04.2005

    View details for Web of Science ID 000227211000030

    View details for PubMedID 15728856

  • A second canon: Functions and mechanisms of beta-catenin-independent wnt signaling DEVELOPMENTAL CELL Veeman, M. T., Axelrod, J. D., Moon, R. T. 2003; 5 (3): 367-377

    Abstract

    More is becoming known about so-called noncanonical Wnt pathways that signal independently of beta-catenin. Here we review recent developments in both the functions and mechanisms of noncanonical Wnt signaling. We also discuss some unresolved and vexing questions. How many noncanonical Wnt pathways are there? How extensive are the parallels between Drosophila planar polarization and vertebrate convergence and extension? Last, we will outline some challenges and difficulties we foresee for this exciting but still very young field.

    View details for Web of Science ID 000185309600006

    View details for PubMedID 12967557

  • Fidelity in planar cell polarity signalling NATURE Ma, D., Yang, C. H., McNeill, H., Simon, M. A., Axelrod, J. D. 2003; 421 (6922): 543-547

    Abstract

    The polarity of Drosophila wing hairs displays remarkable fidelity. Each of the approximately 30,000 wing epithelial cells constructs an actin-rich prehair that protrudes from its distal vertex and points distally. The distal location and orientation of the hairs is virtually error free, thus forming a nearly perfect parallel array. This process is controlled by the planar cell polarity signalling pathway. Here we show that interaction between two tiers of the planar cell polarity signalling mechanism results in the observed high fidelity. The first tier, mediated by the cadherin Fat, dictates global orientation by transducing a directional signal to individual cells. The second tier, orchestrated by the 7-pass transmembrane receptor Frizzled, aligns each cell's polarity with that of its neighbours through the action of an intercellular feedback loop, enabling polarity to propagate from cell to cell. We show that all cells need not respond correctly to the presumably subtle signal transmitted by Fat. Subsequent action of the Frizzled feedback loop is sufficient to align all the cells cooperatively. This economical system is therefore highly robust, and produces virtually error-free arrays.

    View details for DOI 10.1038/nature01366

    View details for Web of Science ID 000180670600048

    View details for PubMedID 12540853

  • A three-tiered mechanism for regulation of planar cell polarity SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY Tree, D. R., Ma, D. L., Axelrod, J. D. 2002; 13 (3): 217-224

    Abstract

    Some epithelial cells are polarized along an axis orthogonal to their apical-basal axes. Recent studies in Drosophila lead to the view that three classes of signaling molecules govern the planar cell polarity (PCP) pathway. The first class, or module, functions across whole tissues, providing directional information to individual cells. The second module, apparently shared by all planar polarized tissues, and related to the canonical Wnt signaling pathway, interprets the directional signal to produce subcellular asymmetries. The third modules are tissue specific, acting to translate subcellular asymmetry into the appropriate morphological manifestations in the different cell types.

    View details for DOI 10.1016/S1084-9521(02)00042-3

    View details for Web of Science ID 000177976000009

    View details for PubMedID 12137730

  • Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling CELL Tree, D. R., Shulman, J. M., Rousset, R., Scott, M. P., Gubb, D., Axelrod, J. D. 2002; 109 (3): 371-381

    Abstract

    Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Dishevelled localization. In the absence of Prickle, Frizzled and Dishevelled remain symmetrically distributed. Prickle localizes to the proximal side of pupal wing cells and binds the Dishevelled DEP domain, inhibiting Dishevelled membrane localization and antagonizing Frizzled accumulation. This activity is linked to Frizzled activity on the adjacent cell surface. Prickle therefore functions in a feedback loop that amplifies differences between Frizzled levels on adjacent cell surfaces.

    View details for Web of Science ID 000175412100012

    View details for PubMedID 12015986

  • Regulation of Frizzled by fat-like cadherins during planar polarity signaling in the Drosophila compound eye CELL Yang, C. H., Axelrod, J. D., Simon, M. A. 2002; 108 (5): 675-688

    Abstract

    Planar polarity is evident in the coordinated orientation of ommatidia in the Drosophila eye. This process requires that the R3 photoreceptor precursor of each ommatidium have a higher level of Frizzled signaling than its neighboring R4 precursor. We show that two cadherin superfamily members, Fat and Dachsous, and the transmembrane/secreted protein Four-jointed play important roles in this process. Our data support a model in which the bias of Frizzled signaling between the R3/R4 precursors results from higher Fat function in the precursor cell closer to the equator, which becomes R3. We also provide evidence that positional information regulating Fat action is provided by graded expression of Dachsous across the eye and the action of Four-jointed, which is expressed in an opposing expression gradient and appears to modulate Dachsous function.

    View details for Web of Science ID 000174314800011

    View details for PubMedID 11893338

  • Coupling planar cell polarity signaling to morphogenesis. TheScientificWorldJournal Axelrod, J. D., McNeill, H. 2002; 2: 434-454

    Abstract

    Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical-basal axes, referred to as Planar Cell Polarity (PCP). The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly, Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate to Drosophila PCP signaling.

    View details for PubMedID 12806028

  • Strabismus comes into focus NATURE CELL BIOLOGY Axelrod, J. D. 2002; 4 (1): E6-E8

    View details for Web of Science ID 000173381500003

    View details for PubMedID 11780132

  • Unipolar membrane association of dishevelled mediates frizzled planar cell polarity signaling GENES & DEVELOPMENT Axelrod, J. D. 2001; 15 (10): 1182-1187

    Abstract

    Drosophila epithelia acquire a planar cell polarity (PCP) orthogonal to their apical-basal axes. Frizzled (Fz) is the receptor for the PCP signal, and Dishevelled (Dsh) transduces the signal. Here, I demonstrate that unipolar relocalization of Dsh to the membrane is required to mediate PCP, but not Wingless (Wg) signaling. Dsh membrane localization reflects the activation of Fz/PCP signaling, revealing that the initially symmetric signal evolves to one that displays unipolar asymmetry, specifying the cells' ultimate polarity. This transition from symmetric to asymmetric Dsh localization requires Dsh function, and reflects an amplification process that generates a steep intracellular activity gradient necessary to determine PCP.

    View details for Web of Science ID 000168930600002

    View details for PubMedID 11358862

  • Drosophila Rho-associated kinase (Drok) links frizzled-mediated planar cell polarity signaling to the actin cytoskeleton CELL Winter, C. G., Wang, B., Ballew, A., Royou, A., Karess, R., Axelrod, J. D., Luo, L. Q. 2001; 105 (1): 81-91

    Abstract

    Frizzled (Fz) and Dishevelled (Dsh) are components of an evolutionarily conserved signaling pathway that regulates planar cell polarity. How this signaling pathway directs asymmetric cytoskeletal reorganization and polarized cell morphology remains unknown. Here, we show that Drosophila Rho-associated kinase (Drok) works downstream of Fz/Dsh to mediate a branch of the planar polarity pathway involved in ommatidial rotation in the eye and in restricting actin bundle formation to a single site in developing wing cells. The primary output of Drok signaling is regulating the phosphorylation of nonmuscle myosin regulatory light chain, and hence the activity of myosin II. Drosophila myosin VIIA, the homolog of the human Usher Syndrome 1B gene, also functions in conjunction with this newly defined portion of the Fz/Dsh signaling pathway to regulate the actin cytoskeleton.

    View details for Web of Science ID 000168063300009

    View details for PubMedID 11301004

  • naked cuticle targets dishevelled to antagonize Wnt signal transduction GENES & DEVELOPMENT Rousset, R., Mack, J. A., Wharton, K. A., Axelrod, J. D., Cadigan, K. M., Fish, M. P., Nusse, R., Scott, M. P. 2001; 15 (6): 658-671

    Abstract

    In Drosophila embryos the protein Naked cuticle (Nkd) limits the effects of the Wnt signal Wingless (Wg) during early segmentation. nkd loss of function results in segment polarity defects and embryonic death, but how nkd affects Wnt signaling is unknown. Using ectopic expression, we find that Nkd affects, in a cell-autonomous manner, a transduction step between the Wnt signaling components Dishevelled (Dsh) and Zeste-white 3 kinase (Zw3). Zw3 is essential for repressing Wg target-gene transcription in the absence of a Wg signal, and the role of Wg is to relieve this inhibition. Our double-mutant analysis shows that, in contrast to Zw3, Nkd acts when the Wg pathway is active to restrain signal transduction. Yeast two hybrid and in vitro experiments indicate that Nkd directly binds to the basic-PDZ region of Dsh. Specially timed Nkd overexpression is capable of abolishing Dsh function in a distinct signaling pathway that controls planar-cell polarity. Our results suggest that Nkd acts directly through Dsh to limit Wg activity and thus determines how efficiently Wnt signals stabilize Armadillo (Arm)/beta-catenin and activate downstream genes.

    View details for Web of Science ID 000167821300003

    View details for PubMedID 11274052

  • Frizzled signaling and the developmental control of cell polarity TRENDS IN GENETICS Shulman, J. M., Perrimon, N., Axelrod, J. D. 1998; 14 (11): 452-458

    Abstract

    Within the last three years, Frizzled receptors have risen from obscurity to celebrity status owing to their functional identification as receptors for the ubiquitous family of secreted WNT signaling factors. However, the founding member of the Frizzled family, Drosophila Frizzled (FZ), was cloned almost a decade ago because of its role in regulating cell polarity within the plane of an epithelium. In this review, we consider the role of FZ in this intriguing context. We discuss recent progress towards elucidating mechanisms for the intracellular specification of planar polarity, and further review evidence for models of global polarity regulation at the tissue level. The data suggest that a genetic 'cassette', encoding a set of core signaling components, could pattern hair, bristle and ommatidial planar polarity in Drosophila, and that additional tissue-specific factors might explain the diversity of signal responses. Recently described examples from the nematode and frog suggest that the developmental control of cell polarity by FZ receptors might represent a functionally conserved signaling mechanism.

    View details for Web of Science ID 000076946100005

    View details for PubMedID 9825673

  • Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways GENES & DEVELOPMENT Axelrod, J. D., Miller, J. R., Shulman, J. M., MOON, R. T., Perrimon, N. 1998; 12 (16): 2610-2622

    Abstract

    In Drosophila, planar cell polarity (PCP) signaling is mediated by the receptor Frizzled (Fz) and transduced by Dishevelled (Dsh). Wingless (Wg) signaling also requires Dsh and may utilize DFz2 as a receptor. Using a heterologous system, we show that Dsh is recruited selectively to the membrane by Fz but not DFz2, and this recruitment depends on the DEP domain but not the PDZ domain in Dsh. A mutation in the DEP domain impairs both membrane localization and the function of Dsh in PCP signaling, indicating that translocation is important for function. Further genetic and molecular analyses suggest that conserved domains in Dsh function differently during PCP and Wg signaling, and that divergent intracellular pathways are activated. We propose that Dsh has distinct roles in PCP and Wg signaling. The PCP signal may selectively result in focal Fz activation and asymmetric relocalization of Dsh to the membrane, where Dsh effects cytoskeletal reorganization to orient prehair initiation.

    View details for Web of Science ID 000075604900015

    View details for PubMedID 9716412

  • wingless refines its own expression domain on the Drosophila wing margin NATURE Rulifson, E. J., Micchelli, C. A., Axelrod, J. D., Perrimon, N., Blair, S. S. 1996; 384 (6604): 72-74

    Abstract

    The imaginal discs of Drosophila, which give rise to the adult appendages, are patterned during a period of intense cell proliferation. The specification of differing regions occurs in some cases by subdividing the disc epithelium into lineage compartments. However, in most cases precise boundaries are formed between different cell types without early compartmentalization. One such boundary occurs between the wingless (wg)-expressing cells of the wing margin and the adjacent proneural cells, which give rise to margin sensory bristles. Here we show that this boundary arises in part by a mechanism of 'self-refinement', by which wingless protein (Wg) represses wg expression in adjacent cells. Cells unable to receive the Wg signal do not resolve the boundary between wg-expressing and proneural cells.

    View details for Web of Science ID A1996VR21900056

    View details for PubMedID 8900280

  • Conservation of dishevelled structure and function between flies and mice: Isolation and characterization of Dvl2 MECHANISMS OF DEVELOPMENT Klingensmith, J., Yang, Y., Axelrod, J. D., Beier, D. R., Perrimon, N., Sussman, D. J. 1996; 58 (1-2): 15-26

    Abstract

    The segment polarity gene dishevelled (dsh) of Drosophila is required for pattern formation of the embryonic segments and the adult imaginal discs. dsh encodes the earliest-acting and most specific known component of the signal transduction pathway of Wingless, an extracellular signal homologous to Wnt1 in mice. We have previously described the isolation and characterization of the Dvl1 mouse dsh homolog. We report here the isolation of a second mouse dsh homolog, Dvl2, which maps to chromosome 11. The Dvl2 amino acid sequence is equally related to the dsh sequence as is that of Dvl1, but Dvl2 is most similar to the Xenopus homolog Xdsh. However, unlike the other vertebrate dsh homologs. Like the other genes, Dvl2 is ubiquitously expressed throughout most of embryogenesis and is expressed in many adult organs. We have developed an assay for dsh function in fly embryos, and show that Dvl2 can partially rescue the segmentation defects of embryos devoid of dsh. Thus, Dvl2 encodes a mammalian homolog of dsh which can transduce the Wingless signal.

    View details for Web of Science ID A1996VJ10700002

    View details for PubMedID 8887313

  • The wingless signaling pathway is directly involved in Drosophila heart development DEVELOPMENTAL BIOLOGY Park, M. Y., Wu, X. S., GOLDEN, K., Axelrod, J. D., Bodmer, R. 1996; 177 (1): 104-116

    Abstract

    Heart development in both vertebrates and Drosophila is initiated by bilaterally symmetrical primordia that may be of equivalent embryological origin: the anterior lateral plate mesoderm in vertebrates and the dorsal-most mesoderm in arthropods. These mesodermal progenitors then merge into a heart tube at the ventral midline (vertebrates) or the dorsal midline (Drosophila). These observations suggest that there may be similarities between vertebrate and invertebrate heart development. The homeobox gene, tinman, is required for heart as well as visceral mesoderm formation in Drosophila, and at least one of several vertebrate genes with similarities in protein sequence and cardiac expression to tinman is crucial for heart development in vertebrates. Inductive signals are also required for Drosophila heart development: The secreted gene product of wingless (wg) is critical for heart development during a time period distinct from its function in segmentation and neurogenesis. Here, we show that wg is epistatic to hedgehog (hh), another secreted segmentation gene product, in its requirement for heart formation. We also provide evidence show that downstream of wg in the signal transduction cascade, dishevelled (dsh, a pioneer protein) and armadillo (arm, beta-catenin homolog) are mediating the cardiogenic Wg signal. In particular, overexpression of dsh can restore heart formation in the absence of wg function. We discuss the possibility that Wg signaling is part of a combinatorial mechanism to specify the cardiac mesoderm.

    View details for Web of Science ID A1996VA13600010

    View details for PubMedID 8660881

  • Interaction between wingless and notch signaling pathways mediated by dishevelled SCIENCE Axelrod, J. D., Matsuno, K., ARTAVANISTSAKONAS, S., Perrimon, N. 1996; 271 (5257): 1826-1832

    Abstract

    In Drosophila, the Wingless and Notch signaling pathways function in m any of the same developmental patterning events. Genetic analysis demonstrates that the dishevelled gene, which encodes a molecule previously implicated in implementation of the Winglass signal, interacts antagonistically with Notch and one of its known ligands, Delta. A direct physical interaction between Dishevelled and the Notch carboxyl terminus, distal to the cdc10/ankyrin repeats, suggests a mechanism for this interaction. It is proposed that Dishevelled, in addition to transducing the Wingless signal, blocks Notch signaling directly, thus providing a molecular mechanism for the inhibitory cross talk observed between these pathways.

    View details for Web of Science ID A1996UC77800035

    View details for PubMedID 8596950

  • THE COLLECTION AND EVALUATION OF PERIPHERAL-BLOOD PROGENITOR CELLS SUFFICIENT FOR REPETITIVE CYCLES OF HIGH-DOSE CHEMOTHERAPY SUPPORT TRANSFUSION Benjamin, R. J., LINSLEY, L., Axelrod, J. D., Churchill, W. H., Sieff, C., Shulman, L. N., Elias, A., Ayash, L., MALACHOWSKI, M. E., Uhl, L., GAYNES, L., McCauley, M., Thompson, L., Mazanet, R., Antman, K., Schnipper, L., Tepler, I., Antin, J. H., WHEELER, C. 1995; 35 (10): 837-844

    Abstract

    The development of an optimized peripheral blood progenitor cell (PBPC) harvest protocol to provide support for repetitive chemotherapy cycles is described.PBPCs mobilized by cyclophosphamide plus granulocyte-colony-stimulating factor (G-CSF) were studied in 163 leukapheresis harvests from 26 lymphoma patients. Harvested cells were transfused with two chemotherapy cycles and with an autologous bone marrow transplant. Progenitor cell content was examined in the context of hematopoietic engraftment.Mobilization allowed the harvest of large numbers of PBPCs. Peak harvests tended to occur after the recovering white cell count exceeded 10 x 10(9) per L. CD34+ lymphomononuclear cell (MNC) and colony-forming units-granulocyte-macrophage (CFU-GM) counts correlated poorly, but both measures peaked within 24 hours of each other in 21 of 26 patients, which demonstrated PBPC mobilization. Engraftment of platelets (> 50 x 10(9)/L) and granulocytes (> 500 x 10(6)/L) was achieved in a median of 20.5 and 16 days, respectively. A minimum number of progenitors necessary to ensure engraftment could be derived.Cyclophosphamide and G-CSF allowed the harvest of sufficient PBPCs to support multiple rounds of chemotherapy. Harvest should commence when the recovery white cell count exceeds 10 x 10(9) per L. PBPC harvest CD34+MNC counts are as useful as CFU-GM results in the assessment of PBPC content, and they may allow harvest protocols to be tailored to individual patients.

    View details for Web of Science ID A1995TA44800008

    View details for PubMedID 7570914

  • GAL4 DISRUPTS A REPRESSING NUCLEOSOME DURING ACTIVATION OF GAL1 TRANSCRIPTION INVIVO GENES & DEVELOPMENT Axelrod, J. D., Reagan, M. S., Majors, J. 1993; 7 (5): 857-869

    Abstract

    Photofootprinting in vivo of GAL1 reveals an activation-dependent pattern between the UASG and the TATA box, in a sequence not required for transcriptional activation by GAL4. The pattern results from a nucleosome whose position depends on sequences within the UASG. In the wild-type gene, activation by GAL4 and derivatives disrupts this nucleosome. This activity is independent of interactions with DNA-bound core transcription factors and is proportional to the strength of the activator. Presence of the nucleosome correlates with low basal transcription levels under various conditions, suggesting a role in limiting basal expression. We propose a role for the GAL4 activation domain in displacing a nucleosome and suggest that this is part of the mechanism by which GAL4 activates transcription in vivo.

    View details for Web of Science ID A1993LC49800012

    View details for PubMedID 8491382

  • PROLINE-INDEPENDENT BINDING OF PUT3 TRANSCRIPTIONAL ACTIVATOR PROTEIN DETECTED BY FOOTPRINTING INVIVO MOLECULAR AND CELLULAR BIOLOGY Axelrod, J. D., Majors, J., Brandriss, M. C. 1991; 11 (1): 564-567

    Abstract

    The PUT3 gene product is a transcriptional activator required for expression of the enzymes of the proline utilization pathway. Using two methods of footprinting in vivo, we have determined that PUT3 protein is poised at the promoters of the genes encoding these enzymes and that proline-mediated induction modulates the activity of constitutively bound PUT3.

    View details for Web of Science ID A1991ER08100060

    View details for PubMedID 1986247

  • AN IMPROVED METHOD FOR PHOTOFOOTPRINTING YEAST GENES INVIVO USING TAQ POLYMERASE NUCLEIC ACIDS RESEARCH Axelrod, J. D., Majors, J. 1989; 17 (1): 171-183

    Abstract

    We have developed an improved method for photofootprinting in vivo which utilizes the thermostable DNA polymerase from T. aquaticus (Taq) in a primer extension assay. UV light is used to introduce photoproducts into the genomic DNA of intact yeast cells. The photoproducts are then detected and mapped at the nucleotide level by multiple rounds of annealing and extension using Taq polymerase, which is blocked by photoproducts in the template DNA. The method is more rapid, sensitive, and reproducible than the previously described chemical photofootprinting procedure developed in this laboratory (Nature 325. 173-177), and detects photoproducts with a specificity which is similar, but not identical to that of the previously described procedure. Binding of GAL4 protein to its binding sites within the GAL1-10 upstream activating sequence is demonstrated using the primer extension photofootprinting method. The primer extension assay can also be used to map DNA strand breakage generated by other footprinting methods, and to determine DNA sequence directly from the yeast genome.

    View details for Web of Science ID A1989R859800014

    View details for PubMedID 2643080

  • VITAMIN-D AFFECTS PROLIFERATION OF A MURINE T-HELPER CELL CLONE JOURNAL OF IMMUNOLOGY Lacey, D. L., Axelrod, J., Chappel, J. C., Kahn, A. J., Teitelbaum, S. L. 1987; 138 (6): 1680-1686

    Abstract

    1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), the biologically active form of vitamin D3, has been shown to inhibit the activation of T cell hybridomas and heterogeneous populations of mononuclear leukocytes. Because the response of various clones to 1,25(OH)2D3 may differ, we have examined the proliferative effects of the steroid on an antigen-specific cloned, nontransformed T helper cell line (D10.G4.1 [D10 cells]), and find that in contrast to these previous studies, the steroid is a potent stimulator of lectin-induced proliferation. In these experiments, D10 cells were incubated with concanavalin A and 1,25(OH)2D3, and although the lectin or steroid alone has minimal proliferative effects, their co-addition prompts up to a 50-fold increase in 3H-TdR incorporation at a concentration of 2.5 to 5 X 10(-9) M 1,25(OH)2D3, with significant mitogenesis occurring at 0.1 to 0.3 X 10(-9) M 1,25(OH)2D3. 25-Hydroxyvitamin D3 and 24,25(OH)2D3 have similar activity, but at concentrations two to three times greater than that of 1,25(OH)2D3, reflecting their relative affinities for the 1,25(OH)2D3 receptor. In addition, lectin treatment enhances 1,25(OH)2D3 receptor capacity fourfold to fivefold, an event coupled with the appearance of positive cooperativity. Although the steroid does not affect the quantity of bioassayable T cell growth factors as assessed by HT-2 cell proliferation, the expression of immunoreactive IL 2 receptors by lectin-activated D10 cells exposed to 1,25(OH)2D3 is enhanced. In contrast to its proliferative effect in the absence of IL 1, 1,25(OH)2D3 exerts biphasic effects on D10 replication when this monokine is present. Specifically, this steroid augments D10 proliferation at low concentrations of recombinant IL 1, but as the abundance of the monokine increases in the presence of 10(-10) to 10(-8) M 1,25(OH)2D3, the peak response of D10 cells to optimal IL 1 concentrations is diminished. Therefore, in this clone, 1,25(OH)2D3 presents itself as a regulator of T helper cell proliferation.

    View details for Web of Science ID A1987G388300005

    View details for PubMedID 3029220

  • UNIQUE CYTOCHALASIN-B BINDING CHARACTERISTICS OF THE HEPATIC GLUCOSE CARRIER BIOCHEMISTRY Axelrod, J. D., Pilch, P. F. 1983; 22 (9): 2222-2227

    Abstract

    Cytochalasin B is shown to inhibit uptake of 3-O-methylglucose into isolated rat hepatocytes with a Ki = 1.9 microM. The nature of this inhibition was characterized by studies of [3H]cytochalasin B binding to liver plasma membranes. Scatchard analysis of [3H]cytochalasin B binding reveals a complex curvilinear binding pattern. This pattern can be resolved into three components: (1) a high-affinity (ca. 10(-8) M) cytochalasin E sensitive site unrelated to glucose uptake, (2) a glucose-sensitive site, and (3) a low-affinity site. When 5 microM cytochalasin E is employed to mask the high-affinity site, glucose displaces 40-60% of the remaining [3H]cytochalasin B binding. Analysis of this glucose-sensitive cytochalasin B binding according to Scatchard reveals a Kd = 1.7 microM, indistinguishable from the concentration of cytochalasin B which half-maximally inhibits hepatic glucose uptake. These data identify a glucose-sensitive cytochalasin B binding site in liver plasma membranes which corresponds to the glucose carrier in the intact hepatocyte. The Ki of 1.9 microM for inhibition of hepatic glucose uptake by cytochalasin B and the Kd of 1.7 microM for [3H]cytochalasin B binding to liver plasma membranes are values 1 order of magnitude higher than values for the same parameters determined in all previous studies of facilitated hexose diffusion systems. The hepatic hexose carrier is therefore unique, and this uniqueness may be of regulatory significance with regard to glucose homeostasis.

    View details for Web of Science ID A1983QM57500025

    View details for PubMedID 6683102

  • UNIMPAIRED SIGNAL TRANSDUCTION BY THE ADIPOCYTE INSULIN-RECEPTOR FOLLOWING ITS PARTIAL PROTEOLYTIC FRAGMENTATION JOURNAL OF BIOLOGICAL CHEMISTRY Pilch, P. F., Axelrod, J. D., COLELLO, J., Czech, M. P. 1981; 256 (4): 1570-1575

    View details for Web of Science ID A1981LD10900019

    View details for PubMedID 7007367

Stanford Medicine Resources: