Bio

Honors & Awards


  • TANSA Award, Government of Tamil Nadu, India (1999)
  • Young Scientist Award in Chemistry, Council of Scientific and Industrial Research, India (1996)
  • SPARK award, Stanford (2009, 2011, 2012)

Education & Certifications


  • M,S, University of Madras, Chemistry (1983)
  • Ph.D, Indian Institute of Technology, Biophysical Chemistry (1990)

Professional

Professional Interests


Dr. Rajadas is currently working on the molecular mechanism of neurodegenerative disorders caused by aggregated tau and abeta proteins—proteins that are synergically involved in Alzheimer’s disease development. He uses various biophysical approaches such as AFM, fluorescence, and NMR to understand the structural details of neurotoxic oligomeric forms of these two proteins.

For the last 7 years, our lab has also been involved in transforming biophysical ideas into biomaterial and drug delivery technologies. These technologies include microencapsulation of drugs, vascular grafts, bio-implants, development of small molecule and protein-based drugs, regeneration of nerve and cardiovascular tissues, and wound healing applications

Work Experience


  • Director, Biomaterials and Advanced Drug Delivery Lab, Stanford School of Medicine (2010 - Present)

    Location

    Stanford, CA

  • Assistant Director, Cardiovascular Pharmacology, Stanford school of medicine (2013 - Present)

    Location

    Stanford, CA

  • Lecturer, Neurology and Neurological Sciences, Stanford school of medicine (2012 - Present)

    Location

    Stanford, CA

  • Instructor, Neurology and Neurological Sciences, Stanford University School of Medicine (2007 - 2012)

    Location

    Stanford, CA

  • Consulting Professor, Department of Chemical Engineering, Stanford University (2005 - 2007)

    Location

    Stanford, CA

  • Visiting Professor, Department of Biological Sciences, Stanford University (2003 - 2005)

    Location

    Stanford, CA

Publications

Journal Articles


  • Effects of light on metalloporphyrin-treated newborn mice. Acta paediatrica (Oslo, Norway : 1992) Wong, R. J., Schulz, S., Espadas, C., Vreman, H. J., Rajadas, J., Stevenson, D. K. 2014

    Abstract

    Zinc protoporphyrin (ZnPP) is a promising metalloporphyrin with sufficient potency, but has poor solubility and is not absorbed well orally. Intragastric administration of ZnPP microparticles (30 μmol/kg) to 3-day-old mice resulted in a twofold increase in potency and no signs of phototoxicity.The use of polymeric particulate delivery systems can improve the stability and enhance intestinal absorption of ZnPP, while retaining HO inhibitory potency without photosensitising effects, and thus is potentially useful in treating neonatal hyperbilirubinemia.

    View details for DOI 10.1111/apa.12554

    View details for PubMedID 24417721

  • Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles. Biomaterials Jiang, X., Malkovskiy, A. V., Tian, W., Sung, Y. K., Sun, W., Hsu, J. L., Manickam, S., Wagh, D., Joubert, L., Semenza, G. L., Rajadas, J., Nicolls, M. R. 2014; 35 (2): 803-813

    Abstract

    Airway tissue ischemia and hypoxia in human lung transplantation is a consequence of the sacrifice of the bronchial circulation during the surgical procedure and is a major risk factor for the development of airway anastomotic complications. Augmented expression of hypoxia-inducible factor (HIF)-1α promotes microvascular repair and alleviates allograft ischemia and hypoxia. Deferoxamine mesylate (DFO) is an FDA-approved iron chelator which has been shown to upregulate cellular HIF-1α. Here, we developed a nanoparticle formulation of DFO that can be topically applied to airway transplants at the time of surgery. In a mouse orthotopic tracheal transplant (OTT) model, the DFO nanoparticle was highly effective in enhancing airway microvascular perfusion following transplantation through the production of the angiogenic factors, placental growth factor (PLGF) and stromal cell-derived factor (SDF)-1. The endothelial cells in DFO treated airways displayed higher levels of p-eNOS and Ki67, less apoptosis, and decreased production of perivascular reactive oxygen species (ROS) compared to vehicle-treated airways. In summary, a DFO formulation topically-applied at the time of surgery successfully augmented airway anastomotic microvascular regeneration and the repair of alloimmune-injured microvasculature. This approach may be an effective topical transplant-conditioning therapy for preventing airway complications following clinical lung transplantation.

    View details for DOI 10.1016/j.biomaterials.2013.09.092

    View details for PubMedID 24161166

  • Solvent Microenvironments and Copper Binding Alters the Conformation and Toxicity of a Prion Fragment PLOS ONE Inayathullah, M., Satheeshkumar, K. S., Malkovskiy, A. V., Carre, A. L., Sivanesan, S., Hardesty, J. O., Rajadas, J. 2013; 8 (12)

    Abstract

    The secondary structures of amyloidogenic proteins are largely influenced by various intra and extra cellular microenvironments and metal ions that govern cytotoxicity. The secondary structure of a prion fragment, PrP(111-126), was determined using circular dichroism (CD) spectroscopy in various microenvironments. The conformational preferences of the prion peptide fragment were examined by changing solvent conditions and pH, and by introducing external stress (sonication). These physical and chemical environments simulate various cellular components at the water-membrane interface, namely differing aqueous environments and metal chelating ions. The results show that PrP(111-126) adopts different conformations in assembled and non-assembled forms. Aging studies on the PrP(111-126) peptide fragment in aqueous buffer demonstrated a structural transition from random coil to a stable β-sheet structure. A similar, but significantly accelerated structural transition was observed upon sonication in aqueous environment. With increasing TFE concentrations, the helical content of PrP(111-126) increased persistently during the structural transition process from random coil. In aqueous SDS solution, PrP(111-126) exhibited β-sheet conformation with greater α-helical content. No significant conformational changes were observed under various pH conditions. Addition of Cu(2+) ions inhibited the structural transition and fibril formation of the peptide in a cell free in vitro system. The fact that Cu(2+) supplementation attenuates the fibrillar assemblies and cytotoxicity of PrP(111-126) was witnessed through structural morphology studies using AFM as well as cytotoxicity using MTT measurements. We observed negligible effects during both physical and chemical stimulation on conformation of the prion fragment in the presence of Cu(2+) ions. The toxicity of PrP(111-126) to cultured astrocytes was reduced following the addition of Cu(2+) ions, owing to binding affinity of copper towards histidine moiety present in the peptide.

    View details for DOI 10.1371/journal.pone.0085160

    View details for Web of Science ID 000329117900128

    View details for PubMedID 24386462

  • The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials Serpooshan, V., Zhao, M., Metzler, S. A., Wei, K., Shah, P. B., Wang, A., Mahmoudi, M., Malkovskiy, A. V., Rajadas, J., Butte, M. J., Bernstein, D., Ruiz-Lozano, P. 2013; 34 (36): 9048-9055

    Abstract

    Regeneration of the damaged myocardium is one of the most challenging fronts in the field of tissue engineering due to the limited capacity of adult heart tissue to heal and to the mechanical and structural constraints of the cardiac tissue. In this study we demonstrate that an engineered acellular scaffold comprising type I collagen, endowed with specific physiomechanical properties, improves cardiac function when used as a cardiac patch following myocardial infarction. Patches were grafted onto the infarcted myocardium in adult murine hearts immediately after ligation of left anterior descending artery and the physiological outcomes were monitored by echocardiography, and by hemodynamic and histological analyses four weeks post infarction. In comparison to infarcted hearts with no treatment, hearts bearing patches preserved contractility and significantly protected the cardiac tissue from injury at the anatomical and functional levels. This improvement was accompanied by attenuated left ventricular remodeling, diminished fibrosis, and formation of a network of interconnected blood vessels within the infarct. Histological and immunostaining confirmed integration of the patch with native cardiac cells including fibroblasts, smooth muscle cells, epicardial cells, and immature cardiomyocytes. In summary, an acellular biomaterial with specific biomechanical properties promotes the endogenous capacity of the infarcted myocardium to attenuate remodeling and improve heart function following myocardial infarction.

    View details for DOI 10.1016/j.biomaterials.2013.08.017

    View details for PubMedID 23992980

  • An Anti-CD34 Antibody-Functionalized Clinical-Grade POSS-PCU Nanocomposite Polymer for Cardiovascular Stent Coating Applications: A Preliminary Assessment of Endothelial Progenitor Cell Capture and Hemocompatibility PLOS ONE Tan, A., Goh, D., Farhatnia, Y., Natasha, G., Lim, J., Teoh, S., Rajadas, J., Alavijeh, M. S., Seifalian, A. M. 2013; 8 (10)
  • Blocking Macrophage Leukotriene B-4 Prevents Endothelial Injury and Reverses Pulmonary Hypertension SCIENCE TRANSLATIONAL MEDICINE Tian, W., Jiang, X., Tamosiuniene, R., Sung, Y. K., Qian, J., Dhillon, G., Gera, L., Farkas, L., Rabinovitch, M., Zamanian, R. T., Inayathullah, M., Fridlib, M., Rajadas, J., Peters-Golden, M., Voelkel, N. F., Nicolls, M. R. 2013; 5 (200)
  • Surface modification of a polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer as a stent coating for enhanced capture of endothelial progenitor cells BIOINTERPHASES Tan, A., Farhatnia, Y., Goh, D., Natasha, G., de Mel, A., Lim, J., Teoh, S., Malkovskiy, A. V., Chawla, R., Rajadas, J., Cousins, B. G., Hamblin, M. R., Alavijeh, M. S., Seifalian, A. M. 2013; 8
  • Synthesis of D-amino acid peptides and their effect on beta-amyloid aggregation and toxicity in transgenic Caenorhabditis elegans MEDICINAL CHEMISTRY RESEARCH Jagota, S., Rajadas, J. 2013; 22 (8): 3991-4000
  • Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications ACTA BIOMATERIALIA Sun, W., Araci, Z., Inayathullah, M., Manickam, S., Zhang, X., Bruce, M. A., Marinkovich, M. P., Lane, A. T., Milla, C., Rajadas, J., Butte, M. J. 2013; 9 (8): 7767-7774

    Abstract

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy.

    View details for DOI 10.1016/j.actbio.2013.04.045

    View details for Web of Science ID 000322207700017

    View details for PubMedID 23648574

  • Channelrhodopsins: visual regeneration and neural activation by a light switch NEW BIOTECHNOLOGY Natasha, G., Tan, A., Farhatnia, Y., Rajadas, J., Hamblin, M. R., Khaw, P. T., Seifalian, A. M. 2013; 30 (5): 461-474

    Abstract

    The advent of optogenetics provides a new direction for the field of neuroscience and biotechnology, serving both as a refined investigative tool and as potential cure for many medical conditions via genetic manipulation. Although still in its infancy, recent advances in optogenetics has made it possible to remotely manipulate in vivo cellular functions using light. Coined Nature Methods' 'Method of the Year' in 2010, the optogenetic toolbox has the potential to control cell, tissue and even animal behaviour. This optogenetic toolbox consists of light-sensitive proteins that are able to modulate membrane potential in response to light. Channelrhodopsins (ChR) are light-gated microbial ion channels, which were first described in green algae. ChR2 (a subset of ChR) is a seven transmembrane α helix protein, which evokes membrane depolarization and mediates an action potential upon photostimulation with blue (470nm) light. By contrast to other seven-transmembrane proteins that require second messengers to open ion channels, ChR2 form ion channels themselves, allowing ultrafast depolarization (within 50milliseconds of illumination). It has been shown that integration of ChR2 into various tissues of mice can activate neural circuits, control heart muscle contractions, and even restore breathing after spinal cord injury. More compellingly, a plethora of evidence has indicated that artificial expression of ChR2 in retinal ganglion cells can reinstate visual perception in mice with retinal degeneration.

    View details for DOI 10.1016/j.nbt.2013.04.007

    View details for Web of Science ID 000321695200006

    View details for PubMedID 23664865

  • Nanotechnology-Based Gene-Eluting Stents MOLECULAR PHARMACEUTICS Goh, D., Tan, A., Farhatnia, Y., Rajadas, J., Alavijeh, M. S., Seifalian, A. M. 2013; 10 (4): 1279-1298

    Abstract

    Cardiovascular disease is one of the major causes of death in the world. Coronary stenting in percutaneous coronary intervention (PCI) has revolutionized the field of cardiology. Coronary stenting is seen as a less invasive procedure compared to coronary artery bypass graft (CABG) surgery. Two main types of stents currently exist in the market: bare-metal stents (BMS) and drug-eluting stents (DES). DES were developed in response to problems associated with BMS use, like neointimal hyperplasia leading to restenosis. However, the use of DES engendered other problems as well, like late stent thrombosis (ST), which is a serious and lethal complication. Gene-eluting stents (GES) have recently been proposed as a novel method of circumventing problems seen in BMS and DES. Utilizing nanotechnology, sustained and localized delivery of genes can mitigate problems of restenosis and late ST by accelerating the regenerative capacity of re-endothelialization. Therefore this review seeks to explore the realm of GES as a novel alternative to BMS and DES, and its potential implications in the field of nanotechnology and regenerative medicine.

    View details for DOI 10.1021/mp3006616

    View details for Web of Science ID 000317094100014

    View details for PubMedID 23394068

  • Inception to actualization: Next generation coronary stent coatings incorporating nanotechnology JOURNAL OF BIOTECHNOLOGY Tan, A., Farhatnia, Y., de Mel, A., Rajadas, J., Alavijeh, M. S., Seifalian, A. M. 2013; 164 (1): 151-170

    Abstract

    Percutaneous coronary intervention (PCI) is used to treat blocked coronary arteries. Bare-metal stents (BMS) were first used in PCI but often necessitated repair procedures due to in-stent restenosis. Drug-eluting stents (DES) were developed to address this problem as the stent-incorporated anti-proliferative drugs prevented restenosis. However late-stent thrombosis arose with the use of DES due to polymer hypersensitivity and impaired re-endothelialization. Evidence suggests that using a combination of biofunctionalized polymers and antibody/peptide motifs can prevent thrombosis while ensuring in situ endothelialization. The advent of nanotechnology has engendered techniques like layer-by-layer self-assembly, and localized drug and gene delivery using nanoparticles. Therefore, this review seeks to explore the convergence of biotechnology and nanotechnology for the next generation coronary stent coatings, with an emphasis on its development from bench to beside.

    View details for DOI 10.1016/j.jbiotec.2013.01.020

    View details for Web of Science ID 000315527900022

    View details for PubMedID 23376617

  • Enhanced A beta(1-40) Production in Endothelial Cells Stimulated with Fibrillar A beta(1-42) PLOS ONE Rajadas, J., Sun, W., Li, H., Inayathullah, M., Cereghetti, D., Tan, A., Coelho, V. d., Chrest, F. J., Kusiak, J. W., Smith, W. W., Taub, D., Wu, J. C., Rifkind, J. M. 2013; 8 (3)
  • Exosomes as nano-theranostic delivery platforms for gene therapy ADVANCED DRUG DELIVERY REVIEWS Tan, A., Rajadas, J., Seifalian, A. M. 2013; 65 (3): 357-367

    Abstract

    Exosomes are biological membrane vesicles measuring 30 to 100 nm. They contain an abundance of small molecules like tetraspanins, receptors for targeting and adhesion, lipids, and RNA. They are secreted by most biological cells, and are involved in a plethora of physiological functions including, but not limited to, transport of genetic material, modulation of the immune system, and cell-to-cell communication. It has been further reported that exosomes utilize a mechanism similar to that of viruses for gaining entry into cells. Due to their viral-like transfection efficiency and inherent biological function, compelling evidence indicates that exosomes can be used as novel delivery platforms for gene therapy. Furthermore, RNA-containing exosomes derived from cells can serve as functional genetic biomarkers for diseases. This twin modality of therapeutic and diagnostic is termed theranostics in the emerging field of nanomedicine. Hence in this review, we seek to expound on the various facets of exosomes, highlighting their significance in and relevance to nano-theranostic platforms for gene therapy.

    View details for DOI 10.1016/j.addr.2012.06.014

    View details for Web of Science ID 000317324100006

    View details for PubMedID 22820532

  • Pathogenesis of Abeta Oligomers in Synaptic Failure CURRENT ALZHEIMER RESEARCH Sivanesan, S., Tan, A., Rajadas, J. 2013; 10 (3): 316-323

    Abstract

    The soluble Abeta oligomers in brain are highly correlated with memory related synaptic dysfunctions in Alzheimer's disease (AD). However, more recent studies implicate the involvement of Abeta dimers and trimers in memory related AD pathology. Apparently, Abeta oligomers can bind with cellular prion protein at the membrane receptors, forming annular amyloid pores and membrane ion channels to induce aberrant spine cytoskeletal changes. Hence synapse targeting of Abeta oligomers involves activation of many receptors such as N-Methyl-D-aspartate (NMDA), alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), nicotinic acetylcholine (nAChRs), p75 neurotrophin (p75NTR) following aberrant clustering of metabotropic glutamate receptors (mGluR5) leading to neuronal loss and LTP failure. In particular, NMDA and AMPA receptor activation by soluble amyloid oligomers involves calcium mediated mitochondrial dysfunction, decreased Ca((2+))/calmodulin-dependent protein kinase II (CaMKII) levels at the synapses accompanying dramatic loss of synaptic proteins such as postsynaptic density-95 (PSD-95), dynamin-1 and synaptophysin. This kind of receptor-Abeta oligomer interaction might eventually affect the neuronal membrane integrity by altering dielectric barrier, various synaptic proteins, spine morphology and density and P/Q calcium currents that might provoke a cascade of events leading to neuronal loss and memory failure. In this review, we try to explain in detail the various possible mechanisms that connect Abeta oligomers with synapse damage and memory failure.

    View details for Web of Science ID 000317272900011

    View details for PubMedID 23036017

  • Biochemical engineering nerve conduits using peptide amphiphiles JOURNAL OF CONTROLLED RELEASE Tan, A., Rajadas, J., Seifalian, A. M. 2012; 163 (3): 342-352

    Abstract

    Peripheral nerve injury is a debilitating condition. The gold standard for treatment is surgery, requiring an autologous nerve graft. Grafts are harvested from another part of the body (a secondary site) to treat the affected primary area. However, autologous nerve graft harvesting is not without risks, with associated problems including injury to the secondary site. Research into biomaterials has engendered the use of bioartificial nerve conduits as an alternative to autologous nerve grafts. These include synthetic and artificial materials, which can be manufactured into nerve conduits using techniques inspired by nanotechnology. Recent evidence indicates that peptide amphiphiles (PAs) are promising candidates for use as materials for bioengineering nerve conduits. PAs are biocompatible and biodegradable protein-based nanomaterials, capable of self-assembly in aqueous solutions. Their self-assembly system, coupled with their intrinsic capacity for carrying bioactive epitopes for tissue regeneration, form particularly novel attributes for biochemically-engineered materials. Furthermore, PAs can function as biomimetic materials and advanced drug delivery platforms for sustained and controlled release of a plethora of therapeutic agents. Here we review the realm of nerve conduit tissue engineering and the potential for PAs as viable materials in this exciting and rapidly advancing field.

    View details for DOI 10.1016/j.jconrel.2012.08.009

    View details for Web of Science ID 000312266500009

    View details for PubMedID 22910143

  • Chaperone Activity of Small Heat Shock Proteins Underlies Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis JOURNAL OF BIOLOGICAL CHEMISTRY Kurnellas, M. P., Brownell, S. E., Su, L., Malkovskiy, A. V., Rajadas, J., Dolganov, G., Chopra, S., Schoolnik, G. K., Sobel, R. A., Webster, J., Ousman, S. S., Becker, R. A., Steinman, L., Rothbard, J. B. 2012; 287 (43): 36423-36434

    Abstract

    To determine whether the therapeutic activity of ?B crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73-92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.

    View details for DOI 10.1074/jbc.M112.371229

    View details for Web of Science ID 000310364000062

    View details for PubMedID 22955287

  • Synergistic photothermal ablative effects of functionalizing carbon nanotubes with a POSS-PCU nanocomposite polymer JOURNAL OF NANOBIOTECHNOLOGY Tan, A., Madani, S. Y., Rajadas, J., Pastorin, G., Seifalian, A. M. 2012; 10

    Abstract

    The application of nanotechnology in biology and medicine represents a significant paradigm shift in the approach to the treatment of cancer. Evidence suggests that when exposed to near-infrared radiation (NIR), carbon nanotubes (CNTs) dissipate a substantial amount of heat energy. We have developed a novel nanocomposite polymer, polyhedral oligomeric silsesquioxane poly (carbonate-urea) urethane (POSS-PCU). POSS-PCU displays excellent biocompatibility and has been used in making artificial organs as well as protective coatings for medical devices.Functionalizing (or "coating") CNTs with POSS-PCU confers biocompatibility and increase the amount of heat energy generated, by enhancing dispersion. Here we demonstrate that POSS-PCU-functionalized multi-walled CNTs (MWNTs) act synergistically together when exposed to NIR to thermally ablate cancer cells.Given that POSS-PCU has already been used in human in first-in-man studies as trachea, lacrimal duct, bypass graft and other organs, our long-term goal is to take POSS-PCU coated CNTs to clinical studies to address the treatment of cancer by optimizing its therapeutic index and increasing its specificity via antibody conjugation.

    View details for DOI 10.1186/1477-3155-10-34

    View details for Web of Science ID 000310031500001

    View details for PubMedID 22849373

  • Glucose Oxidase Incorporated Collagen Matrices for Dermal Wound Repair in Diabetic Rat Models: A Biochemical Study JOURNAL OF BIOMATERIALS APPLICATIONS Arul, V., Masilamoni, J. G., Jesudason, E. P., Jaji, P. J., Inayathullah, M., John, D. G., Vignesh, S., Jayakumar, R. 2012; 26 (8): 917-938

    Abstract

    Impaired wound healing in diabetes is a well-documented phenomenon. Emerging data favor the involvement of free radicals in the pathogenesis of diabetic wound healing. We investigated the beneficial role of the sustained release of reactive oxygen species (ROS) in diabetic dermal wound healing. In order to achieve the sustained delivery of ROS in the wound bed, we have incorporated glucose oxidase in the collagen matrix (GOIC), which is applied to the healing diabetic wound. Our in vitro proteolysis studies on incorporated GOIC show increased stability against the proteases in the collagen matrix. In this study, GOIC film and collagen film (CF) are used as dressing material on the wound of streptozotocin-induced diabetic rats. A significant increase in ROS (p?

    View details for DOI 10.1177/0885328210390402

    View details for Web of Science ID 000303649700002

    View details for PubMedID 21363874

  • A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of A on synapses and dendritic spines HUMAN MOLECULAR GENETICS Yu, W., Polepalli, J., Wagh, D., Rajadas, J., Malenka, R., Lu, B. 2012; 21 (6): 1384-1390

    Abstract

    Alzheimer's disease (AD) is the most common neurodegenerative disease and the leading cause of dementia in the elderly. Accumulating evidence supports soluble amyloid-? (A?) oligomers as the leading candidate for the causative agent in AD and synapses as the primary site of A? oligomer action. However, the molecular and cellular mechanisms by which A? oligomers cause synaptic dysfunction and cognitive impairments remain poorly understood. Using primary cultures of rat hippocampal neurons as a model system, we show that the partitioning defective-1 (PAR-1)/microtubule affinity-regulating kinase (MARK) family kinases act as critical mediators of A? toxicity on synapses and dendritic spines. Overexpression of MARK4 led to tau hyperphosphorylation, reduced expression of synaptic markers, and loss of dendritic spines and synapses, phenotypes also observed after A? treatment. Importantly, expression of a non-phosphorylatable form of tau with the PAR-1/MARK site mutated blocked the synaptic toxicity induced by MARK4 overexpression or A? treatment. To probe the involvement of endogenous MARK kinases in mediating the synaptic toxicity of A?, we employed a peptide inhibitor capable of effectively and specifically inhibiting the activities of all PAR-1/MARK family members. This inhibitor abrogated the toxic effects of A? oligomers on dendritic spines and synapses as assayed at the morphological and electrophysiological levels. Our results reveal a critical role for PAR-1/MARK kinases in AD pathogenesis and suggest PAR-1/MARK inhibitors as potential therapeutics for AD and possibly other tauopathies where aberrant tau hyperphosphorylation is involved.

    View details for DOI 10.1093/hmg/ddr576

    View details for Web of Science ID 000300721300015

    View details for PubMedID 22156579

  • The Role of Pro, Gly Lys, and Arg Containing Peptides on Amyloid-Beta Aggregation INTERNATIONAL JOURNAL OF PEPTIDE RESEARCH AND THERAPEUTICS Jagota, S., Rajadas, J. 2012; 18 (1): 53-61
  • Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold BIOMATERIALS Rustad, K. C., Wong, V. W., Sorkin, M., Glotzbach, J. P., Major, M. R., Rajadas, J., Longaker, M. T., Gurtner, G. C. 2012; 33 (1): 80-90

    Abstract

    In this study, we examined the capacity of a biomimetic pullulan-collagen hydrogel to create a functional biomaterial-based stem cell niche for the delivery of mesenchymal stem cells (MSCs) into wounds. Murine bone marrow-derived MSCs were seeded into hydrogels and compared to MSCs grown in standard culture conditions. Hydrogels induced MSC secretion of angiogenic cytokines and expression of transcription factors associated with maintenance of pluripotency and self-renewal (Oct4, Sox2, Klf4) when compared to MSCs grown in standard conditions. An excisonal wound healing model was used to compare the ability of MSC-hydrogel constructs versus MSC injection alone to accelerate wound healing. Injection of MSCs did not significantly improve time to wound closure. In contrast, wounds treated with MSC-seeded hydrogels showed significantly accelerated healing and a return of skin appendages. Bioluminescence imaging and FACS analysis of luciferase+/GFP+ MSCs indicated that stem cells delivered within the hydrogel remained viable longer and demonstrated enhanced engraftment efficiency than those delivered via injection. Engrafted MSCs were found to differentiate into fibroblasts, pericytes and endothelial cells but did not contribute to the epidermis. Wounds treated with MSC-seeded hydrogels demonstrated significantly enhanced angiogenesis, which was associated with increased levels of VEGF and other angiogenic cytokines within the wounds. Our data suggest that biomimetic hydrogels provide a functional niche capable of augmenting MSC regenerative potential and enhancing wound healing.

    View details for DOI 10.1016/j.biomaterials.2011.09.041

    View details for Web of Science ID 000297399700009

    View details for PubMedID 21963148

  • Effect of Phenolic Compounds Against A beta Aggregation and A beta-Induced Toxicity in Transgenic C. elegans NEUROCHEMICAL RESEARCH Jagota, S., Rajadas, J. 2012; 37 (1): 40-48

    Abstract

    Substantial evidence suggests that the aggregation of amyloid-? (A?) peptide into fibrillar structures that is rich in ?-sheets is implicated as the cause of Alzheimer's disease. Therefore, an attractive therapeutic strategy is to prevent or alter A? aggregation. Phenolic compounds are natural substances that are composed of one or more aromatic phenolic rings and present in wine, tea, fruits, vegetables and a wide variety of plants. In this work, we investigated the effects of ferulic acid, morin, quercetin and gossypol against A? aggregation. From the ThT and turbidity assays, it is observed that in addition to the fibril aggregate, another type of aggregate is formed in the presence of morin, quercetin, and gossypol. On the other hand, ferulic acid did not prevent fibril formation, but it did appear to reduce the average length of fibrils compared to A? alone. To study the protective effects of phenolic compounds on A?-induced toxicity, we utilized the nematode Caenorhabditis elegans (C. elegans) as an in vivo model organism, human A? is expressed intracellularly in the body wall muscle. We found that exposure of Caenorhabditis elegans to ferulic acid give more protection against A? toxicity than morin, quercetin and gossypol.

    View details for DOI 10.1007/s11064-011-0580-5

    View details for Web of Science ID 000302404000007

    View details for PubMedID 21858698

  • Stem cell niches for skin regeneration. International journal of biomaterials Wong, V. W., Levi, B., Rajadas, J., Longaker, M. T., Gurtner, G. C. 2012; 2012: 926059-?

    Abstract

    Stem cell-based therapies offer tremendous potential for skin regeneration following injury and disease. Functional stem cell units have been described throughout all layers of human skin and the collective physical and chemical microenvironmental cues that enable this regenerative potential are known as the stem cell niche. Stem cells in the hair follicle bulge, interfollicular epidermis, dermal papillae, and perivascular space have been closely investigated as model systems for niche-driven regeneration. These studies suggest that stem cell strategies for skin engineering must consider the intricate molecular and biologic features of these niches. Innovative biomaterial systems that successfully recapitulate these microenvironments will facilitate progenitor cell-mediated skin repair and regeneration.

    View details for DOI 10.1155/2012/926059

    View details for PubMedID 22701121

  • Structural preferences of A beta fragments in different micellar environments NEUROPEPTIDES Sambasivam, D., Sivanesan, S., Ashok, B. S., Rajadas, J. 2011; 45 (6): 369-376

    Abstract

    Amyloid diseases occur due to conformational change in the native protein. Understanding the amyloid peptide structural stability and conformational preference at the molecular level in membranous environment may lead to advancement in drug design and therapy. The conformational preferences of amyloid peptide fragments, A?????, A??????, A?????? and A?????? was studied in buffers, trifluoroethanol (TFE) and sodium dodecyl sulfate (SDS) micelles using circular dichroism spectroscopy. The fragment, A????? in TFE adopts a mixture of random coil and turn conformations. A?????? and A?????? underwent transition from random coil to helix conformation, while A?????? exhibited ?-sheet conformation in initial stage which was unaltered on complete evaporation of TFE. Addition of SDS to A?????? and A?????? favors ?-sheet structure, which was predominant in the case of A??????. However, in A????? and A??????, no secondary structural change was noticed even at high SDS concentrations. On aging, all the peptide fragments showed ?-sheet conformational transition. The C-terminal fragment has the ability to adopt predominant ?-sheet conformation even in the presence of detergent and membrane mimicking environment. Altogether, the structural information gained from the short fragments could be further used for determining their role in the organization of A? peptide in stable fibril form.

    View details for DOI 10.1016/j.npep.2011.09.001

    View details for Web of Science ID 000297875400002

    View details for PubMedID 22019176

  • Pullulan Hydrogels Improve Mesenchymal Stem Cell Delivery into High-Oxidative-Stress Wounds MACROMOLECULAR BIOSCIENCE Wong, V. W., Rustad, K. C., Glotzbach, J. P., Sorkin, M., Inayathullah, M., Major, M. R., Longaker, M. T., Rajadas, J., Gurtner, G. C. 2011; 11 (11): 1458-1466

    Abstract

    Cell-based therapies for wound repair are limited by inefficient delivery systems that fail to protect cells from the acute inflammatory environment. Here, a biomimetic hydrogel system is described that is based on the polymer pullulan, a carbohydrate glucan known to exhibit potent antioxidant capabilities. It is shown that pullulan hydrogels are an effective cell delivery system and improve mesenchymal stem cell survival and engraftment in high-oxidative-stress environments. The results suggest that glucan hydrogel systems may prove beneficial for progenitor-cell-based approaches to skin regeneration.

    View details for DOI 10.1002/mabi.201100180

    View details for Web of Science ID 000297555500002

    View details for PubMedID 21994074

  • Adipose tissue-derived stem cells display a proangiogenic phenotype on 3D scaffolds. Journal of biomedical materials research. Part A Neofytou, E. A., Chang, E., Patlola, B., Joubert, L., Rajadas, J., Gambhir, S. S., Cheng, Z., Robbins, R. C., Beygui, R. E. 2011; 98 (3): 383-393

    Abstract

    Ischemic heart disease is the leading cause of death worldwide. Recent studies suggest that adipose tissue-derived stem cells (ASCs) can be used as a potential source for cardiovascular tissue engineering due to their ability to differentiate along the cardiovascular lineage and to adopt a proangiogenic phenotype. To understand better ASCs' biology, we used a novel 3D culture device. ASCs' and b.END-3 endothelial cell proliferation, migration, and vessel morphogenesis were significantly enhanced compared to 2D culturing techniques. ASCs were isolated from inguinal fat pads of 6-week-old GFP+/BLI+ mice. Early passage ASCs cells (P3-P4), PKH26-labeled murine b.END-3 cells or a co-culture of ASCs and b.END-3 cells were seeded at a density of 1 × 10(5) on three different surface configurations: (a) a 2D surface of tissue culture plastic, (b) Matrigel, and (c) a highly porous 3D scaffold fabricated from inert polystyrene. VEGF expression, cell proliferation, and tubulization, were assessed using optical microscopy, fluorescence microscopy, 3D confocal microscopy, and SEM imaging (n = 6). Increased VEGF levels were seen in conditioned media harvested from co-cultures of ASCs and b.END-3 on either Matrigel or a 3D matrix. Fluorescence, confocal, SEM, bioluminescence revealed improved cell, proliferation, and tubule formation for cells seeded on the 3D polystyrene matrix. Collectively, these data demonstrate that co-culturing ASCs with endothelial cells in a 3D matrix environment enable us to generate prevascularized tissue-engineered constructs. This can potentially help us to surpass the tissue thickness limitations faced by the tissue engineering community today.

    View details for DOI 10.1002/jbm.a.33113

    View details for PubMedID 21630430

  • Vascular anastomosis using controlled phase transitions in poloxamer gels NATURE MEDICINE Chang, E. I., Galvez, M. G., Glotzbach, J. P., Hamou, C. D., El-Ftesi, S., Rappleye, C. T., Sommer, K., Rajadas, J., Abilez, O. J., Fuller, G. G., Longaker, M. T., Gurtner, G. C. 2011; 17 (9): 1147-U160

    Abstract

    Vascular anastomosis is the cornerstone of vascular, cardiovascular and transplant surgery. Most anastomoses are performed with sutures, which are technically challenging and can lead to failure from intimal hyperplasia and foreign body reaction. Numerous alternatives to sutures have been proposed, but none has proven superior, particularly in small or atherosclerotic vessels. We have developed a new method of sutureless and atraumatic vascular anastomosis that uses US Food and Drug Administration (FDA)-approved thermoreversible tri-block polymers to temporarily maintain an open lumen for precise approximation with commercially available glues. We performed end-to-end anastomoses five times more rapidly than we performed hand-sewn controls, and vessels that were too small (<1.0 mm) to sew were successfully reconstructed with this sutureless approach. Imaging of reconstructed rat aorta confirmed equivalent patency, flow and burst strength, and histological analysis demonstrated decreased inflammation and fibrosis at up to 2 years after the procedure. This new technology has potential for improving efficiency and outcomes in the surgical treatment of cardiovascular disease.

    View details for DOI 10.1038/nm.2424

    View details for Web of Science ID 000294605100038

    View details for PubMedID 21873986

  • Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine NANOMEDICINE Tan, A., Yildirimer, L., Rajadas, J., De la Pena, H., Pastorin, G., Seifalian, A. 2011; 6 (6): 1101-1114

    Abstract

    Cancer is one of the main causes of death in the world, and according to the WHO it is projected to continue rising. Current diagnostic modalities for the detection of cancer include the use of x-rays, magnetic resonance imaging and positron emission tomography, among others. The treatment of cancer often involves the use (or combination) of chemotherapeutic drugs, radiotherapy and interventional surgery (for solid and operable tumors). The application of nanotechnology in biology and medicine is advancing rapidly. Recent evidence suggests that quantum dots (QDs) can be used to image cancer cells as they display superior fluorescent properties compared with conventional chromophores and contrast agents. In addition, carbon nanotubes (CNTs) have emerged as viable candidates for novel chemotherapeutic drug delivery-platforms. The unique photothermal properties of CNTs also allow them to be used in conjunction with near infrared radiation and lasers to thermally ablate cancer cells. Furthermore, mounting evidence indicates that it is possible to conjugate QDs to CNTs, making it possible to exploit their novel attributes in the realm of cancer theranostics (diagnostics and therapy). Here we review the current literature pertaining to the applications of QDs and CNTs in oncology, and also discuss the relevance and implications of nanomedicine in a clinical setting.

    View details for DOI 10.2217/NNM.11.64

    View details for Web of Science ID 000295697600019

    View details for PubMedID 21955079

  • Rationally Designed Turn Promoting Mutation in the Amyloid-beta Peptide Sequence Stabilizes Oligomers in Solution PLOS ONE Rajadas, J., Liu, C. W., Novick, P., Kelley, N. W., Inayathullah, M., LeMieux, M. C., Pande, V. S. 2011; 6 (7)

    Abstract

    Enhanced production of a 42-residue beta amyloid peptide (A?(42)) in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD). The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs) in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the A?(42) peptide (A?(42)Nle35p37) that appear to organize A?(42) into stable oligomers. 2D NMR on the A?(42)Nle35p37 peptide revealed the occurrence of two ?-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the A?(21-43)Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.

    View details for DOI 10.1371/journal.pone.0021776

    View details for Web of Science ID 000293097300006

    View details for PubMedID 21799748

  • Efficient gene delivery of primary human cells using peptide linked polyethylenimine polymer hybrid BIOMATERIALS Dey, D., Inayathullah, M., Lee, A. S., LeMieux, M. C., Zhang, X., Wu, Y., Nag, D., De Almeida, P. E., Han, L., Rajadas, J., Wu, J. C. 2011; 32 (20): 4647-4658

    Abstract

    Polyethylenimine (PEI) based polymers are efficient agents for cell transfection. However, their use has been hampered due to high cell death associated with transfection thereby resulting in low efficiency of gene delivery within the cells. To circumvent the problem of cellular toxicity, metal binding peptides were linked to PEI. Eight peptide-PEI derivatives were synthesized to improve cell survival and transfection efficiency. TAT linked PEI was used as a control polymer. Peptides linked with PEI amines formed nanogels as shown by electron microscopy and atomic force microscopic measurements. Polymers were characterized by spectroscopic methods and their ability to form complexes with plasmids was tested using electrophoretic studies. These modifications improved polymer biocompatibility as well as cell survival markedly, when compared to PEI alone. A subset of the modified peptide-polymers also showed significantly higher transfection efficiency in primary human cells with respect to the widely used transfection agent, lipofectamine. Study of the underlying mechanism of the observed phenomena revealed lower levels of 'reactive oxygen species' (ROS) in the presence of the peptide-polymers when compared to PEI alone. This was further corroborated with global gene expression analysis which showed upregulation of multiple genes and pathways involved in regulating intracellular oxidative stress.

    View details for DOI 10.1016/j.biomaterials.2011.03.016

    View details for Web of Science ID 000291193700019

    View details for PubMedID 21477858

  • Engineered Pullulan-Collagen Composite Dermal Hydrogels Improve Early Cutaneous Wound Healing TISSUE ENGINEERING PART A Wong, V. W., Rustad, K. C., Galvez, M. G., Neofyotou, E., Glotzbach, J. P., Januszyk, M., Major, M. R., Sorkin, M., Longaker, M. T., Rajadas, J., Gurtner, G. C. 2011; 17 (5-6): 631-644

    Abstract

    New strategies for skin regeneration are needed to address the significant medical burden caused by cutaneous wounds and disease. In this study, pullulan-collagen composite hydrogel matrices were fabricated using a salt-induced phase inversion technique, resulting in a structured yet soft scaffold for skin engineering. Salt crystallization induced interconnected pore formation, and modification of collagen concentration permitted regulation of scaffold pore size. Hydrogel architecture recapitulated the reticular distribution of human dermal matrix while maintaining flexible properties essential for skin applications. In vitro, collagen hydrogel scaffolds retained their open porous architecture and viably sustained human fibroblasts and murine mesenchymal stem cells and endothelial cells. In vivo, hydrogel-treated murine excisional wounds demonstrated improved wound closure, which was associated with increased recruitment of stromal cells and formation of vascularized granulation tissue. In conclusion, salt-induced phase inversion techniques can be used to create modifiable pullulan-collagen composite dermal scaffolds that augment early wound healing. These novel biomatrices can potentially serve as a structured delivery template for cells and biomolecules in regenerative skin applications.

    View details for DOI 10.1089/ten.tea.2010.0298

    View details for Web of Science ID 000287801600005

    View details for PubMedID 20919949

  • A matrix micropatterning platform for cell localization and stem cell fate determination ACTA BIOMATERIALIA Huang, N. F., Patlolla, B., Abilez, O., Sharma, H., Rajadas, J., Beygui, R. E., Zarins, C. K., Cooke, J. P. 2010; 6 (12): 4614-4621

    Abstract

    To study the role of cell-extracellular matrix (ECM) interactions, microscale approaches provide the potential to perform high throughput assessment of the effect of the ECM microenvironment on cellular function and phenotype. Using a microscale direct writing (MDW) technique, we characterized the generation of multicomponent ECM microarrays for cellular micropatterning, localization and stem cell fate determination. ECMs and other biomolecules of various geometries and sizes were printed onto epoxide-modified glass substrates to evaluate cell attachment by human endothelial cells. The endothelial cells displayed strong preferential attachment to the ECM patterned regions and aligned their cytoskeleton along the direction of the micropatterns. We next generated ECM microarrays that contained one or more ECM components (namely gelatin, collagen IV and fibronectin) and then cultured murine embryonic stem cell (ESCs) on the microarrays. The ESCs selectively attached to the micropatterned features and expressed markers associated with a pluripotent phenotype, such as E-cadherin and alkaline phosphatase, when maintained in growth medium containing leukemia inhibitory factor. In the presence of the soluble factors retinoic acid and bone morphogenetic protein-4 the ESCs differentiated towards the ectodermal lineage on the ECM microarray with differential ECM effects. The ESCs cultured on gelatin showed significantly higher levels of pan cytokeratin expression, when compared with cells cultured on collagen IV or fibronectin, suggesting that gelatin preferentially promotes ectodermal differentiation. In summary, our results demonstrate that MDW is a versatile approach to print ECMs of diverse geometries and compositions onto surfaces, and it is amenable to the generation of multicomponent ECM microarrays for stem cell fate determination.

    View details for DOI 10.1016/j.actbio.2010.06.033

    View details for Web of Science ID 000284385300018

    View details for PubMedID 20601236

  • Lipid-Induced Conformational Transition of Amyloid beta Peptide Fragments JOURNAL OF MOLECULAR NEUROSCIENCE Sureshbabu, N., Kirubagaran, R., Thangarajah, H., Malar, E. J., Jayakumar, R. 2010; 41 (3): 368-382

    Abstract

    Conformational transition of soluble monomeric amyloid beta-peptide (Abeta) into oligomeric and protofibrillar aggregates plays a key role in the pathogenesis of Alzheimer's disease (AD). One of the central questions surrounding the molecular pathophysiology of AD is how the soluble Abeta is converted into its aggregated toxic form. A more detailed understanding of the conformational transitions involved in the self-assembly of Abeta may facilitate the design of inhibitors of aggregation. In this study, we evaluated the wild-type (WT) Abeta 16-28 peptide (KLVFFAEDVGSNK) and its associated mutants, including A21G (Flemish), E22K (Italian), E22Q (Dutch), and E22G (Arctic) mutants, by examining, in particular, their aggregation kinetics in the presence and in the absence of negatively charged and zwitterionic lipids. Circular dichroic and thioflavin T fluorescence studies indicated that the WT peptide undergoes a rapid conformational transition into beta-sheet structure in solution, whereas the Arctic and Dutch variants show a markedly rapid transition into beta-sheet structure in the presence of negatively charged lipids. These results provide strong evidence suggesting that the reduction in net charge, with a concurrent increase in the net hydrophobicity of the peptide alone or when complexed with lipid in solution, determines the rate of aggregate formation.

    View details for DOI 10.1007/s12031-010-9380-7

    View details for Web of Science ID 000278155000005

    View details for PubMedID 20480256

  • Density functional theory analysis and spectral studies on amyloid peptide A beta(28-35) and its mutants A30G and A30I JOURNAL OF STRUCTURAL BIOLOGY Nagarajan, S., Rajadas, J., Malar, E. J. 2010; 170 (3): 439-450

    Abstract

    Folding and self-assembly of amyloid beta (Abeta) peptide are linked to Alzheimer's disease. To understand the initial stage of amyloid-beta peptide aggregation, conformational characteristics of monomers of wild-type (WT) Abeta(28-35) and its mutant peptides A30G and A30I were investigated using density functional theory calculations and experimental studies. Monomeric structures and their relative stabilities were obtained on the basis of systematic structural optimization in the gas-phase and in the aqueous medium. Computations were performed by hybrid Hartree-Fock-Density Functional Theory (HF-DFT) at B3LYP/6-31G * level. Experimentally, the conformational transitions in the early stages of the octapeptide Abeta(28-35) and its mutants A30G and A30I in solution were characterized by CD, Thioflavin assay and FRET spectroscopy. Examination of the secondary structures revealed that Abeta(28-35) and its mutant monomers exist in random coil conformation in the aqueous medium in agreement with the theoretical predictions, which upon aging is transformed to sheet with different kinetics. This study deals with the structurally important intermediates and it may help to understand the mechanism of amyloid fibril aggregation leading to the onset of Alzheimer's disease.

    View details for DOI 10.1016/j.jsb.2010.02.017

    View details for Web of Science ID 000277946200002

    View details for PubMedID 20188180

  • Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents JOURNAL OF CLINICAL INVESTIGATION Massa, S. M., Yang, T., Xie, Y., Shi, J., Bilgen, M., Joyce, J. N., Nehama, D., Rajadas, J., Longo, F. M. 2010; 120 (5): 1774-1785

    Abstract

    Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest that TrkB agonists might have therapeutic potential. Using in silico screening with a BDNF loop-domain pharmacophore, followed by low-throughput in vitro screening in mouse fetal hippocampal neurons, we have efficiently identified small molecules with nanomolar neurotrophic activity specific to TrkB versus other Trk family members. Neurotrophic activity was dependent on TrkB and its downstream targets, although compound-induced signaling activation kinetics differed from those triggered by BDNF. A selected prototype compound demonstrated binding specificity to the extracellular domain of TrkB. In in vitro models of neurodegenerative disease, it prevented neuronal degeneration with efficacy equal to that of BDNF, and when administered in vivo, it caused hippocampal and striatal TrkB activation in mice and improved motor learning after traumatic brain injury in rats. These studies demonstrate the utility of loop modeling in drug discovery and reveal what we believe to be the first reported small molecules derived from a targeted BDNF domain that specifically activate TrkB.We propose that these compounds constitute a novel group of tools for the study of TrkB signaling and may provide leads for developing new therapeutic agents for neurodegenerative diseases.

    View details for DOI 10.1172/JCI41356

    View details for Web of Science ID 000277248000041

    View details for PubMedID 20407211

  • Interfacial Flow Processing of Collagen LANGMUIR Goffin, A. J., Rajadas, J., Fuller, G. G. 2010; 26 (5): 3514-3521

    Abstract

    A new method for creating substrates made out of ordered collagen fibers, on which cells in culture can align, is proposed. The substrates can be used for research in cell culture, and this research presents a significant advance in the technology to coat implants in order to improve cell adhesion. In the procedure presented here, a molecular solution of collagen is spread at the interface of a saline solution and air to induce fiber formation, compressed at a high speed to induce orientation and deposited on solid substrates via Langmuir-Blodgett transfer. Several interfacial techniques are employed to investigate the behavior of collagen, which is shown to be dependent on the salt concentration of the subphase as well as the temperature. After Langmuir-Blodgett transfer, primary human fibroblasts and adipose-derived stem cells are cultured on the collagen substrates. Both types of cells respond favorably to the collagen orientation and align with the deposited fibers. The technique presented here provides a simple method to produce well-controlled, oriented collagen substrates that can be used in tissue culture research or scaffolding applications without the use of additives and/or bioincompatible materials.

    View details for DOI 10.1021/la9031317

    View details for Web of Science ID 000274636900079

    View details for PubMedID 20000428

  • A beta peptide conformation determines uptake and interleukin-1 alpha expression by primary microglial cells NEUROBIOLOGY OF AGING Parvathy, S., Rajadas, J., Ryan, H., Vaziri, S., Anderson, L., Murphy, G. M. 2009; 30 (11): 1792-1804

    Abstract

    Microglia clear amyloid beta (Abeta) after immunization. The interaction of Abeta with the microglial cell surface also results in cytokine expression. Soluble oligomers and protofibrils of Abeta may be more neurotoxic than Abeta fibrils. We investigated the effects of oligomeric, protofibrillar and fibrillar Abeta40 and Abeta42 peptides on uptake and IL-1alpha expression by primary microglia. Abeta peptide assemblies were extensively characterized. Primary microglial cells were exposed to different Abeta40 and Abeta42 assemblies and IL-1alpha expression was quantified. To study uptake, microglial cells were exposed to different assemblies of Cy3-labeled Abeta. We found that Abeta42 and Abeta40 oligomers and fibrils induced IL-1alpha expression, but protofibrils did not. We also observed that all forms of Abeta42 (oligomer, protofibril and fibril) and Abeta40 fibrils were taken up by the microglial cells. These results demonstrate that microglial cells can take up non-fibrillar Abeta and that oligomeric peptide induces an inflammatory response. The uptake of oligomeric and protofibrillar Abeta by microglia merits further investigation as a potential means for removing these neurotoxic species from the brain.

    View details for DOI 10.1016/j.neurobiolaging.2008.01.011

    View details for Web of Science ID 000270374000008

    View details for PubMedID 18339452

  • The p75 Neurotrophin Receptor Promotes Amyloid-beta(1-42)-Induced Neuritic Dystrophy In Vitro and In Vivo JOURNAL OF NEUROSCIENCE Knowles, J. K., Rajadas, J., Nguyen, T. V., Yang, T., LeMieux, M. C., Griend, L. V., Ishikawa, C., Massa, S. M., Wyss-Coray, T., Longo, F. M. 2009; 29 (34): 10627-10637

    Abstract

    Oligomeric forms of amyloid-beta (Abeta) are thought to play a causal role in Alzheimer's disease (AD), and the p75 neurotrophin receptor (p75(NTR)) has been implicated in Abeta-induced neurodegeneration. To further define the functions of p75(NTR) in AD, we examined the interaction of oligomeric Abeta(1-42) with p75(NTR), and the effects of that interaction on neurite integrity in neuron cultures and in a chronic AD mouse model. Atomic force microscopy was used to ascertain the aggregated state of Abeta, and fluorescence resonance energy transfer analysis revealed that Abeta oligomers interact with the extracellular domain of p75(NTR). In vitro studies of Abeta-induced death in neuron cultures isolated from wild-type and p75(NTR-/-) mice, in which the p75(NTR) extracellular domain is deleted, showed reduced sensitivity of mutant cells to Abeta-induced cell death. Interestingly, Abeta-induced neuritic dystrophy and activation of c-Jun, a known mediator of Abeta-induced deleterious signaling, were completely prevented in p75(NTR-/-) neuron cultures. Thy1-hAPP(Lond/Swe) x p75(NTR-/-) mice exhibited significantly diminished hippocampal neuritic dystrophy and complete reversal of basal forebrain cholinergic neurite degeneration relative to those expressing wild-type p75(NTR). Abeta levels were not affected, suggesting that removal of p75(NTR) extracellular domain reduced the ability of excess Abeta to promote neuritic degeneration. These findings indicate that although p75(NTR) likely does not mediate all Abeta effects, it does play a significant role in enabling Abeta-induced neurodegeneration in vitro and in vivo, establishing p75(NTR) as an important therapeutic target for AD.

    View details for DOI 10.1523/JNEUROSCI.0620-09.2009

    View details for Web of Science ID 000269317900017

    View details for PubMedID 19710315

  • Radioprotective effect of dl-alpha-lipoic acid on mice skin fibroblasts CELL BIOLOGY AND TOXICOLOGY Davis, G. D., Masilamoni, J. G., Arul, V., Kumar, M. S., Baraneedharan, U., Paul, S. F., Sakthivelu, I. V., Jesudason, E. P., Jayakumar, R. 2009; 25 (4): 331-340

    Abstract

    During the course of cancer radiation treatment, normal skin invariably suffers from the cytotoxic effects of gamma-radiation and reactive oxygen species (ROS), which are generated from the interaction between radiation and the water molecules in cells. The present study was designed to investigate the radioprotective role of alpha-lipoic acid (LA), an antioxidant on murine skin fibroblasts exposed to a single dose of 2, 4, 6, or 8Gy gamma-radiation. Irradiation of fibroblasts significantly increased ROS, nitric oxide, and lipid peroxidation (P < 0.001); all of these factors substantially decreased with 100 microM LA treatment. Hydroxyl radical (OH(.)) production from 8Gy irradiated fibroblasts was measured directly by electron spin resonance using spin-trapping techniques. LA was found to inhibit OH(.) production at 100-microM concentrations. Dose-dependent depletion of antioxidants, such as catalase and glutathione reductase, was observed in irradiated fibroblasts (P < 0.001), along with increased superoxide dismutase (P < 0.001). LA treatment restored antioxidant levels. Concentration of the pro-inflammatory cytokine IL-1beta was significantly reduced in irradiated fibroblasts when treated with LA. MTT and lactate dehydrogenase assays demonstrated that LA treatment reduced cell injury and protected cells against irradiation-induced cytotoxicity. Thus, we conclude that results are encouraging and need further experiments to demonstrate a possible benefit in cancer patients and the reduction of harmful effects of radiation therapy.

    View details for DOI 10.1007/s10565-008-9087-5

    View details for Web of Science ID 000267293600003

    View details for PubMedID 18553143

  • Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer's disease PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Britschgi, M., Olin, C. E., Johns, H. T., Takeda-Uchimura, Y., LeMieux, M. C., Rufibach, K., Rajadas, J., Zhang, H., Tomooka, B., Robinson, W. H., Clark, C. M., Fagan, A. M., Galasko, D. R., Holtzman, D. M., Jutel, M., Kaye, J. A., Lemere, C. A., Leszek, J., Li, G., Peskind, E. R., Quinn, J. F., Yesavage, J. A., Ghiso, J. A., Wyss-Coray, T. 2009; 106 (29): 12145-12150

    Abstract

    A number of distinct beta-amyloid (Abeta) variants or multimers have been implicated in Alzheimer's disease (AD), and antibodies recognizing such peptides are in clinical trials. Humans have natural Abeta-specific antibodies, but their diversity, abundance, and function in the general population remain largely unknown. Here, we demonstrate with peptide microarrays the presence of natural antibodies against known toxic Abeta and amyloidogenic non-Abeta species in plasma samples and cerebrospinal fluid of AD patients and healthy controls aged 21-89 years. Antibody reactivity was most prominent against oligomeric assemblies of Abeta and pyroglutamate or oxidized residues, and IgGs specific for oligomeric preparations of Abeta1-42 in particular declined with age and advancing AD. Most individuals showed unexpected antibody reactivities against peptides unique to autosomal dominant forms of dementia (mutant Abeta, ABri, ADan) and IgGs isolated from plasma of AD patients or healthy controls protected primary neurons from Abeta toxicity. Aged vervets showed similar patterns of plasma IgG antibodies against amyloid peptides, and after immunization with Abeta the monkeys developed high titers not only against Abeta peptides but also against ABri and ADan peptides. Our findings support the concept of conformation-specific, cross-reactive antibodies that may protect against amyloidogenic toxic peptides. If a therapeutic benefit of Abeta antibodies can be confirmed in AD patients, stimulating the production of such neuroprotective antibodies or passively administering them to the elderly population may provide a preventive measure toward AD.

    View details for DOI 10.1073/pnas.0904866106

    View details for Web of Science ID 000268178400059

    View details for PubMedID 19581601

  • Preparation, Physiochemical Characterization, and Oral Immunogenicity of A beta(1-12), A beta(29-40), and A beta(1-42) Loaded PLG Microparticles Formulations JOURNAL OF PHARMACEUTICAL SCIENCES Rajkannan, R., Arul, V., Malar, E. J., Jayakumar, R. 2009; 98 (6): 2027-2039

    Abstract

    Alzheimer's disease (AD) is caused by the deposition of beta-amyloid (Abeta) protein in brain. The current AD immunotherapy aims to prevent Abeta plaque deposition and enhance its degradation in the brain. In this work, the peptides B-cell epitope Abeta(1-12), T-cell epitope Abeta(29-40) and full-length Abeta(1-42) were loaded separately to the poly (D,L-lactide co-glycolide) (PLG) microparticles by using W/O/W double emulsion solvent evaporation method with entrapment efficacy of 70.46%, 60.93%, and 65.98%, respectively. The prepared Abeta PLG microparticles were smooth, spherical, individual, and nonporous in nature with diameters ranging from 2 to 12 microm. The cumulative in vitro release profiles of Abeta(1-12), Abeta(29-40), and Abeta(1-42) from PLG microparticles sustained for long periods and progressively reached to 73.89%, 69.29%, and 70.08% by week 15. In vitro degradation studies showed that the PLG microparticles maintained the surface integrity up to week 8 and eroded completely by week 16. Oral immunization of Abeta peptides loaded microparticles in mice elicited stronger immune response by inducing anti-Abeta antibodies for prolonged time (24 weeks). The physicochemical characterization and immunogenic potency of Abeta peptides incorporated PLG microparticles suggest that the microparticles formulation of Abeta can be a potential oral AD vaccine.

    View details for DOI 10.1002/jps.21600

    View details for Web of Science ID 000266572600012

    View details for PubMedID 18980172

  • Conformational polymorphism and cellular toxicity of IAPP and beta AP domains JOURNAL OF STRUCTURAL BIOLOGY Andrews, M. E., Inayathullah, N. M., Jayakumar, R., Malar, E. J. 2009; 166 (2): 116-125

    Abstract

    The principal component of the amyloid deposits in Alzheimer's disease is the beta-amyloid polypeptide, while in type II diabetes the deposits consist primarily of Islet amyloid polypeptide. These amyloid forming polypeptides consist of highly polymorphic domains, which take different conformations including random coil, helical and beta strand depending upon the microenvironment. We have studied major fibril-forming components of IAPP and beta AP and demonstrated that conformational polymorphism of these peptides in different microenvironments correlate with cellular toxicity and proteasomal inhibitory activity. On treating with trifluoroethanol (TFE) the peptide fragments undergo structural transition from a random coil to a helical conformation. Even though these domains share the same gross amyloid structural characteristic, their proteasomal activities differ. We found that even the tetrapeptides have significant proteasomal inhibitory activity indicating that the amyloid formation is involved in the enhanced life of the smaller aggregates of full-length and fragment peptides, which could explain the toxicity of these sequences.

    View details for DOI 10.1016/j.jsb.2008.12.011

    View details for Web of Science ID 000265560900002

    View details for PubMedID 19374013

  • Synthesis, pharmacological screening, quantum chemical and in vitro permeability studies of N-Mannich bases of benzimidazoles through bovine cornea EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY Jesudason, E. P., Sridhar, S. K., Malar, E. J., Shanmugapandiyan, P., Inayathullah, M., Arul, V., Selvaraj, D., Jayakumar, R. 2009; 44 (5): 2307-2312

    Abstract

    A novel series of N-Mannich bases of benzimidazole derivatives were synthesized and characterized by (1)H NMR, IR spectral studies and elemental analysis. The compounds were screened for analgesic and anti-inflammatory activity. 1-((Diethylamino)-methyl)-2-styryl benzimidazole 4 at 40mg/kg was found to be equipotent to paracetamol. 1-((Piperidin-1-yl) methyl)-2-styryl-benzimidazole 6 at 40mg/kg was found to be more potent than Diclofenac. Corneal permeability and quantum chemical calculations were performed to correlate the hydrogen bonding ability with permeability and activity. The energies of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were correlated with pharmacological activity. The semi-empirical PM3 calculations (quantum chemical calculations) revealed that E(LUMO) and energy gap DeltaE were capable of accounting for the high in vitro bovine corneal permeability and activity of the compounds.

    View details for DOI 10.1016/j.ejmech.2008.03.043

    View details for Web of Science ID 000265339900062

    View details for PubMedID 18486995

  • Surfactant-induced conformational transition of amyloid beta-peptide EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS Sureshbabu, N., Kirubagaran, R., Jayakumar, R. 2009; 38 (4): 355-367

    Abstract

    Accumulating evidence suggests that Abeta(1-42)-membrane interactions may play an important role in the pathogenesis of Alzheimer's disease. However, the mechanism of this structural transition remains unknown. In this work, we have shown that submicellar concentrations of sodium dodecyl sulfate (SDS) can provide a minimal platform for Abeta(1-42) self-assembly. To further investigate the relation between Abeta(1-42) structure and function, we analyzed peptide conformation and aggregation at various SDS concentrations using circular dichroism (CD), Fourier transform infrared spectroscopy, and gel electrophoresis. These aggregates, as observed via atomic force microscopy, appeared as globular particles in submicellar SDS with diameters of 35-60 nm. Upon sonication, these particles increased in disc diameter to 100 nm. Pyrene I (3)/I (1) ratios and 1-anilinonaphthalene-8-sulfonic acid binding studies indicated that the peptide interior is more hydrophobic than the SDS micelle interior. We have also used Forster resonance energy transfer between N-terminal labeled pyrene and tyrosine (10) of Abeta(1-42) in various SDS concentrations for conformational analysis. The results demonstrate that SDS at submicellar concentrations accelerates the formation of spherical aggregates, which act as niduses to form large spherical aggregates upon sonication.

    View details for DOI 10.1007/s00249-008-0379-8

    View details for Web of Science ID 000264263100002

    View details for PubMedID 19005650

  • Small Molecule, Non-Peptide p75(NTR) Ligands Inhibit A beta-Induced Neurodegeneration and Synaptic Impairment PLOS ONE Yang, T., Knowles, J. K., Lu, Q., Zhang, H., Arancio, O., Moore, L. A., Chang, T., Wang, Q., Andreasson, K., Rajadas, J., Fuller, G. G., Xie, Y., Massa, S. M., Longo, F. M. 2008; 3 (11)

    Abstract

    The p75 neurotrophin receptor (p75(NTR)) is expressed by neurons particularly vulnerable in Alzheimer's disease (AD). We tested the hypothesis that non-peptide, small molecule p75(NTR) ligands found to promote survival signaling might prevent Abeta-induced degeneration and synaptic dysfunction. These ligands inhibited Abeta-induced neuritic dystrophy, death of cultured neurons and Abeta-induced death of pyramidal neurons in hippocampal slice cultures. Moreover, ligands inhibited Abeta-induced activation of molecules involved in AD pathology including calpain/cdk5, GSK3beta and c-Jun, and tau phosphorylation, and prevented Abeta-induced inactivation of AKT and CREB. Finally, a p75(NTR) ligand blocked Abeta-induced hippocampal LTP impairment. These studies support an extensive intersection between p75(NTR) signaling and Abeta pathogenic mechanisms, and introduce a class of specific small molecule ligands with the unique ability to block multiple fundamental AD-related signaling pathways, reverse synaptic impairment and inhibit Abeta-induced neuronal dystrophy and death.

    View details for DOI 10.1371/journal.pone.0003604

    View details for Web of Science ID 000265134200003

    View details for PubMedID 18978948

  • Aggregation and conformational studies on a pentapeptide derivative BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS Sambasivam, D., Liu, C. W., Jayaraman, M., Malar, E. J., Rajadas, J. 2008; 1784 (11): 1659-1667

    Abstract

    Most of the disease causing proteins such as beta amyloid, amylin, and huntingtin protein, which are natively disordered, readily form fibrils consisting of beta-sheet polymers. Though all amyloid fibrils are made up of beta-sheet polymers, not all peptides with predominant beta-sheet content in the native state develop into amyloid fibrils. We hypothesize that stable amyloid like fibril formation may require mixture of different conformational states in the peptide. We have tested this hypothesis on amyloid forming peptide namely HCl(Ile)(5)NH(CH(2)CH(2)O)(3)CH(3) (I). We show peptide I, has propensity to form self-assembled structures of beta-sheets in aqueous solutions. When incubated over a period of time in aqueous buffer, I self assembled into beta sheet like structures with diameters ranging from 30 to 60 A that bind with amyloidophilic dyes like Congo red and Thioflavin T. Interestingly peptide I developed into unstable fibrils after prolonged aging at higher concentration in contrast with the general mature fibril-forming propensity of various amyloid petides known to date.

    View details for DOI 10.1016/j.bbapap.2008.07.015

    View details for Web of Science ID 000261019000022

    View details for PubMedID 18775521

  • Diffusible amyloid oligomers trigger systemic amyloidosis in mice BIOCHEMICAL JOURNAL Senthilkumar, S., Chang, E., Jayakumar, R. 2008; 415: 207-215

    Abstract

    AA (amyloid protein A) amyloidosis in mice is markedly accelerated when the animals are given, in addition to an inflammatory stimulus, an intravenous injection of protein extracted from AA-laden mouse tissue. Previous findings affirm that AA fibrils can enhance the in vivo amyloidogenic process by a nucleation seeding mechanism. Accumulating evidence suggests that globular aggregates rather than fibrils are the toxic entities responsible for cell death. In the present study we report on structural and morphological features of AEF (amyloid-enhancing factor), a compound extracted and partially purified from amyloid-laden spleen. Surprisingly, the chief amyloidogenic material identified in the active AEF was diffusible globular oligomers. This partially purified active extract triggered amyloid deposition in vital organs when injected intravenously into mice. This implies that such a phenomenon could have been inflicted through the nucleation seeding potential of toxic oligomers in association with altered cytokine induction. In the present study we report an apparent relationship between altered cytokine expression and AA accumulation in systemically inflamed tissues. The prevalence of serum AA monomers and proteolytic oligomers in spleen AEF is consistent to suggest that extrahepatic serum AA processing might lead to local accumulation of amyloidogenic proteins at the serum AA production site.

    View details for DOI 10.1042/BJ20071696

    View details for Web of Science ID 000260158400004

    View details for PubMedID 18564059

  • Melatonin prevents amyloid protofibrillar induced oxidative imbalance and biogenic amine catabolism LIFE SCIENCES Gunasingh, M. J., Philip, J. E., Ashok, B. S., Kirubagaran, R., Jebaraj, W. C., Davis, G. D., Vignesh, S., Dhandayuthapani, S., Jayakumar, R. 2008; 83 (3-4): 96-102

    Abstract

    Oxidative stress is one of the hypothesized pathogenic mechanisms for neurodegenerative diseases, including Alzheimer's disease (AD); numerous studies suggest that Abeta is toxic to neurons by free radical mediated mechanism. A constant feature in AD brain is selective neuronal loss, accompanied by dysfunction of several neurotransmitter systems, such as cholinergic, serotoninergic and noradrenergic systems. In the present study, we studied the neuroprotective role of melatonin against amyloid protofibrils and the toxicity of protofibrils on serotoninergic and noradrenergic systems. Mice were divided into four groups (n=8 each), control, Scrambles Abeta(35-25) treated, Abeta(25-35) injected, and melatonin treated. A single dose of Abeta(25-35) (25 microg) was administered to mice via intraperitoneal injection. Melatonin (50 mg/kg body weight) was administered intraperitoneally for 3 days to the Abeta(25-35) injected mice. Control mice received only physiological saline and Scrambles receives Abeta(35-25) single intraperitoneal injection of 25 microg of Abeta(35-25). Our study showed that melatonin significantly reduces reactive oxygen species (ROS) production in the astrocytes, lymphocytes and hepatocytes of Abeta injected mice by increasing the levels of scavenging enzymes, SOD, catalase and GSH when compared to the untreated group. Immunohistochemistry study reveals that melatonin prevents the activation of GFAP in neocortex and transcription factor NF-kappaB in liver and neocortex of Abeta injected mice. It also prevents the elevation of dopamine depletion and its degradation products. Thus, while melatonin may be a potential therapeutic agent in the prevention of oxidative stress associated with Abeta and AD, it can also prevent dopamine turnover induced by Abeta.

    View details for DOI 10.1016/j.lfs.2008.05.011

    View details for Web of Science ID 000257936100003

    View details for PubMedID 18590917

  • Efficacy of DL-alpha lipoic acid against systemic inflammation-induced mice: antioxidant defense system MOLECULAR AND CELLULAR BIOCHEMISTRY Jesudason, E. P., Masilamoni, J. G., Jebaraj, C. E., Paul, S. F., Jayakumar, R. 2008; 313 (1-2): 113-123

    Abstract

    Inflammation can activate macrophages or monocytes and sequentially release several inflammatory cytokines and reactive oxygen species (ROS). Oxidative stress-induced acute inflammatory response plays an important role in several diseases. This study was designed to investigate the prophylactic effect of the antioxidant lipoic acid (LA) during inflammation-induced mice. Mice were divided in to three groups (n = 8 in each): control, systemic inflammation, and LA treated mice with systemic inflammation. Results show that ROS was significantly higher in lymphocytes, hepatocytes, and astrocytes (P < 0.05) of inflammation induced mice when compared with control but no significant changes were observed in the LA treated group. Increased levels of lipid peroxidation (LPO) and decreased activities of oxidants such as superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione, and ATPase were observed in the inflammation-induced mice, which returned to near normalcy following LA therapy. In vitro study has shown that LA treatment not only suppresses the increased LPO levels but also inhibits the lipid break down resulting from autoxidation. In addition, increased immunoreactivity of the astrocyte marker glial fibrillary acidic protein (GFAP) was observed in the neocortex region of inflammation-induced mice, whereas nuclear factor kappa B p65 (NFkappaB) immunoreactivity was observed in both the neocortex and liver of the same group which were effectively controlled by LA therapy suggesting that LA can efficiently manage systemic inflammation.

    View details for DOI 10.1007/s11010-008-9748-y

    View details for Web of Science ID 000256091000013

    View details for PubMedID 18401559

  • Amyloid toxicity in skeletal myoblasts: Implications for inclusion-body myositis ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS Jayaraman, M., Kannayiram, G., Rajadas, J. 2008; 474 (1): 15-21

    Abstract

    Skeletal muscle disorder, inclusion-body myositis (IBM) has been known for accumulation of amyloid characteristic proteins in muscle. To understand the biophysical basis of IBM, the interaction of amyloid fibrils with skeletal myoblast cells (SMC) has been studied in vitro. Synthetic insulin fibrils and Abeta(25-35) fibrils were used for this investigation. From the saturation binding analysis, the calculated dissociation constant (K(d)) for insulin fibril and Abeta(25-35) fibrils were 69.37+/-11.17nM and 115.60+/-12.17nM, respectively. The fibrillar insulin comparatively has higher affinity binding to SMC than Abeta fibrils. The competitive binding studies with native insulin showed that the amount of bound insulin fibril was significantly decreased due to displacement of native insulin. However, the presence of native insulin is not altered the binding of beta-amyloid fibril. The cytotoxicity of insulin amyloid intermediates was measured. The pre-fibrillar intermediates of insulin showed significant toxicity (35%) as compared to matured fibrils. Myoblast treated with beta-amyloid fibrils showed more oxidative damage than the insulin fibril. Cell differentiating action of amyloidic insulin was assayed by creatine kinase activity. The insulin fibril treated cells differentiated more slowly compared to native insulin. However, beta-amyloid fibrils do not show cell differentiation property. These findings reinforce the hypothesis that accumulation of amyloid related proteins is significant for the pathological events that could lead to muscle degeneration and weakness in IBM.

    View details for DOI 10.1016/j.abb.2008.03.021

    View details for Web of Science ID 000256459800003

    View details for PubMedID 18397759

  • Lipid-induced conformational transition of the amyloid core fragment A beta(28-35) and its A30G and A30I mutants FEBS JOURNAL Nagarajan, S., Ramalingam, K., Reddy, P. N., Cereghetti, D. M., Malar, E. J., Rajadas, J. 2008; 275 (10): 2415-2427

    Abstract

    The interaction of the beta-amyloid peptide (Abeta) with neuronal membranes could play a key role in the pathogenesis of Alzheimer's disease. Recent studies have focused on the interactions of Abeta oligomers to explain the neuronal toxicity accompanying Alzheimer's disease. In our study, we have investigated the role of lipid interactions with soluble Abeta(28-35) (wild-type) and its mutants A30G and A30I in their aggregation and conformational preferences. CD and Trp fluorescence spectroscopic studies indicated that, immediately on dissolution, these peptides adopted a random coil structure. Upon addition of negatively charged 1,2-dipalmitoyl-syn-glycero-3-phospho-rac-(glycerol) sodium salt (PG) lipid, the wild-type and A30I mutant underwent reorganization into a predominant beta-sheet structure. However, no conformational changes were observed in the A30G mutant on interaction with PG. In contrast, the presence of zwitterionic 1,2-dipalmitoyl-syn-glycero-3-phosphatidylcholine (PC) lipid had no effect on the conformation of these three peptides. These observations were also confirmed with atomic force microscopy and the thioflavin-T assay. In the presence of PG vesicles, both the wild-type and A30I mutant formed fibrillar structures within 2 days of incubation in NaCl/P(i), but not in their absence. Again, no oligomerization was observed with PC vesicles. The Trp studies also revealed that both ends of the three peptides are not buried deep in the vesicle membrane. Furthermore, fluorescence spectroscopy using the environment-sensitive probe 1,6-diphenyl-1,3,5-hexatriene showed an increase in the membrane fluidity upon exposure of the vesicles to the peptides. The latter effect may result from the lipid head group interactions with the peptides. Fluorescence resonance energy transfer experiments revealed that these peptides undergo a random coil-to-sheet conversion in solution on aging and that this process is accelerated by negatively charged lipid vesicles. These results indicate that aggregation depends on hydrophobicity and propensity to form beta-sheets of the amyloid peptide, and thus offer new insights into the mechanism of amyloid neurodegenerative disease.

    View details for DOI 10.1111/j.1742-4658.2008.06378.x

    View details for Web of Science ID 000255285700007

    View details for PubMedID 18422968

  • Inhibitory effects of short-term administration of DL-alpha-lipoic acid on oxidative vulnerability induced by A beta amyloid fibrils (25-35) in mice MOLECULAR AND CELLULAR BIOCHEMISTRY Jesudason, E. P., Masilamoni, J. G., Ashok, B. S., Baben, B., Arul, V., Jesudoss, K. S., Jebaraj, W. C., Dhandayuthapani, S., Vignesh, S., Jayakumar, R. 2008; 311 (1-2): 145-156

    Abstract

    Abeta amyloid peptide is believed to induce oxidative stress leading to inflammation, which is postulated to play a significant role in the toxicity of Alzheimer's disease (AD). This study was designed to investigate the inhibitory effects of DL-alpha lipoic acid (LA), a potential free radical scavenger, on oxidative vulnerability induced by intraperitoneal injection of Abeta25-35 amyloid fibrils in mice. Mice were divided into three groups: control, Abeta amyloid toxicity induced (AT), and LA treated (ATL). Blood Plasma was separated, liver, spleen and brain were dissected and analysis of oxidants, antioxidants, ATPases, glial fibrillary acidic protein (GFAP) and nuclear factor kappa-B (NFkappaB) were carried out. Results show biochemical parameters such as reactive oxygen species (ROS) and lipid peroxidation (LPO) were significantly lowered (P < 0.05) and levels of antioxidants and ATPase (P < 0.05) were significantly increased (P < 0.05) in hepatocytes, splenocytes and astrocytes of the ATL group. Moreover, our histological results revealed a decreased GFAP immunoreactivity in the neocortical region and NFkappaB immunoreactivity in neocortex, liver and spleen. This study reiterates LA as a potent free radical scavenger to combat oxidative vulnerability in the treatment for Abeta amyloid toxicity.

    View details for DOI 10.1007/s11010-008-9705-9

    View details for Web of Science ID 000254204500018

    View details for PubMedID 18224425

  • The neuroprotective role of melatonin against amyloid peptide injected mice FREE RADICAL RESEARCH Masilamoni, J. G., Jesudason, E. P., Dhandayuthapani, S., Ashok, B. S., Vignesh, S., Jebaraj, W. C., Paul, S. F., Jayakumar, R. 2008; 42 (7): 661-673

    Abstract

    Widespread cerebral deposition of a 40-42 amino acid peptide called amyloid beta peptide (A beta) in the form of amyloid fibrils is one of the most prominent neuropathologic features of Alzheimer's disease (AD). The clinical study provides evidence that accumulation of protofibrils due to the Arctic mutation (E22G) causes early AD onset. Melatonin showed beneficial effects in an AD mouse model. Mice were divided into four different groups (n=8 per group): (i) control group, (ii) scrambled A beta-injected group, (iii) A beta protofibril-injected group and (iv) melatonin-treated group. A single dose of (5 microg) A beta protofibril was administered to the A beta protofibril-injected and melatonin-treated groups via intracerebroventricular injections. The results demonstrate that melatonin treatment significantly reduces A beta protofibril-induced reactive oxygen species (ROS) production, intracellular calcium levels and acetylcholinesterase activity in the neocortex and hippocampus regions. Based on these findings it is suggested that melatonin therapy might be a useful treatment for AD patients.

    View details for DOI 10.1080/10715760802277388

    View details for Web of Science ID 000257894700007

    View details for PubMedID 18654881

  • Anti-inflammatory effect of melatonin on A beta vaccination in mice MOLECULAR AND CELLULAR BIOCHEMISTRY Jesudason, E. P., Baben, B., Ashok, B. S., Masilamoni, J. G., Kirubagaran, R., Jebaraj, W. C., Jayakumar, R. 2007; 298 (1-2): 69-81

    Abstract

    A beta vaccination as a therapeutic intervention of Alzheimer's has many challenges, key among them is the regulation of inflammatory processes concomitant with excessive generation of free radicals seen during such interventions. Here we report the beneficial effects of melatonin on inflammation associated with A beta vaccination in the central and peripheral nervous system of mice. Mice were divided into three groups (n=8 in each): control, inflammation (IA), and melatonin-treated (IAM). The brain, liver, and spleen samples were collected after 5 days for quantitative assessment of plasma lipid peroxides (LPO), an oxidative stress marker, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (Gpx). IA group mice have shown the elevated concentration of LPO significantly while there was a reduction at antioxidant enzyme levels. In addition, a significant (P<0.05) reduction in neurotransmitters like dopamine (DA), 5-hydroxytryptamine (5-HT), and norepinephrine (NE) was also observed in the IA group mice. Nevertheless, their metabolites, such as homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-HIAA) increased significantly (P<0.05) as compared to control. Samples were further evaluated at microscopic level to examine the neuropathological changes by immunohistochemical methods. Melatonin treatment effectively reversed these above changes and normalized the LPO and antioxidant enzyme levels (P<0.05). Furthermore, melatonin salvaged the brain cells from inflammation. Our Immunohistochemical findings in the samples of melatonin-treated animals (IAM group) indicated diminished expression of glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (Nf kappa B) than those observed in the IA group samples. Our results suggest that administration of melatonin protects inflammation associated with A beta vaccination, through its direct and indirect actions and it can be an effective adjuvant in the development of vaccination in immunotherapy for Alzheimer's disease (AD).

    View details for DOI 10.1007/s11010-006-9353-x

    View details for Web of Science ID 000246262200005

    View details for PubMedID 17136482

  • A therapeutic approach for diabetic wound healing using biotinylated GHK incorporated collagen matrices LIFE SCIENCES Arul, V., Kartha, R., Jayakumar, R. 2007; 80 (4): 275-284

    Abstract

    Chronically elevated blood glucose levels result in reduced leukocyte function and cell malnutrition, which contribute to a high rate of wound infection and associated healing problems in diabetic patients. In the present study, the role of biotinylated GHK peptide (BioGHK) incorporated collagen biomaterial was tested for wound healing in diabetic rats. The rate of wound contraction and the levels of collagen, uronic acid, protein and DNA in the granulation tissue were determined. Further, the concentration of nitric oxide and other skin antioxidants was also monitored during the study. In diabetic rats treated with BioGHK incorporated collagen (Peptide Incorporated Collagen--PIC), the healing process was hastened with an increased rate of wound contraction. Glutathione (GSH) and ascorbic acid levels in the skin of streptozotocin-induced diabetic rats were higher in the PIC group as compared to control (Untreated) and collagen (Collagen Film--CF) treated groups. Superoxide dismutase (SOD) and catalase (CAT) activity was altered in all the groups. In vitro fibroblast cell culture studies suggest that PIC promotes fibroblast growth. Histological evaluation by haematoxylin-eosin and Masson's trichrome method revealed epithelialization, increased synthesis of collagen and activation of fibroblasts and mast cells in the PIC group. This study provides a rationale for the topical application of BioGHK incorporated collagen as a feasible and productive approach to support diabetic wound healing.

    View details for DOI 10.1016/j.lfs.2006.09.018

    View details for Web of Science ID 000243576500002

    View details for PubMedID 17049946

  • Lipid-induced beta-amyloid peptide assemblage fragmentation BIOPHYSICAL JOURNAL Widenbrant, M. J., Rajadas, J., Sutardja, C., Fuller, G. G. 2006; 91 (11): 4071-4080

    Abstract

    Alzheimer's disease is the most common cause of dementia and is widely believed to be due to the accumulation of beta-amyloid peptides (Abeta) and their interaction with the cell membrane. Abetas are hydrophobic peptides derived from the amyloid precursor proteins by proteolytic cleavage. After cleavage, these peptides are involved in a self-assembly-triggered conformational change. They are transformed into structures that bind to the cell membrane, causing cellular degeneration. However, it is not clear how these peptide assemblages disrupt the structural and functional integrity of the membrane. Membrane fluidity is one of the important parameters involved in pathophysiology of disease-affected cells. Probing the Abeta aggregate-lipid interactions will help us understand these processes with structural detail. Here we show that a fluid lipid monolayer develop immobile domains upon interaction with Abeta aggregates. Atomic force microscopy and transmission electron microscopy data indicate that peptide fibrils are fragmented into smaller nano-assemblages when interacting with the membrane lipids. Our findings could initiate reappraisal of the interactions between lipid assemblages and Abeta aggregates involved in Alzheimer's disease.

    View details for DOI 10.1529/biophysj.106.085944

    View details for Web of Science ID 000241945600016

    View details for PubMedID 17098805

  • Biodegradation and biocompatibility of contraceptive-steroid-loaded poly (DL-lactide-co-glycolide) injectable microspheres: in vitro and in vivo study CONTRACEPTION Dhanaraju, M. D., RajKannan, R., Selvaraj, D., Jayakumar, R., Vamsadhara, C. 2006; 74 (2): 148-156

    Abstract

    A controlled-release drug delivery of contraceptive steroids levonorgestrel (LNG) and ethinyl estradiol (EE) has been developed by successful encapsulation of LNG and EE in poly (lactide-co-glycolide) (PLG) microspheres.Smooth, spherical, steroid-loaded PLG microspheres with a mean size of 10-25 microm were prepared by using the water/oil/water double-emulsion solvent evaporation method.In vitro release profiles showed an increased burst release of LNG/EE on Week 1; thereafter, the release was sustained. At the end of Week 7, the release of LNG/EE from 1:5 and 1:10 PLG microspheres was 75.64% and 62.55%. respectively. In vitro degradation studies showed that the PLG microspheres maintained surface integrity up to Week 8 and then eroded completely by Week 20. In an in vivo study, the serum concentration of LNG/EE in rats showed a triphasic release response, with an initial burst release of 8 ng/mL LNG and 14 pg/mL EE on Day 1; thereafter, a controlled release of the drugs to the systemic circulation was maintained until Week 15, maintaining constant drug levels of 2 ng/mL LNG and 3-4 pg/mL EE in the blood. Histological examination of steroid-loaded PLG microspheres injected intramuscularly into the thigh muscle of Wistar rats showed minimal inflammatory reaction, demonstrating that contraceptive-steroid-loaded microspheres were biocompatible.This controlled-release and biocompatible nature of the PLG microspheres may have potential application in contraceptive therapy.

    View details for DOI 10.1016/j.contraception.2006.01.015

    View details for Web of Science ID 000239484700010

    View details for PubMedID 16860053

  • Development of hepatitis B oral vaccine using B-cell epitope loaded PLG microparticles VACCINE Rajkannan, R., Dhanaraju, M. D., Gopinath, D., Selvaraj, D., Jayakumar, R. 2006; 24 (24): 5149-5157

    Abstract

    Oral hepatitis B vaccine formulation was prepared by successful encapsulation of immunogenic peptide representing residues 127-145 of the immunodominant B-cell epitope of hepatitis B surface antigen (HBsAg) in poly(D,L-lactide co-glycolide) (PLG) microparticles. The smooth, spherical PLG microparticles with a diameter of around 10 microm was prepared by using W/O/W double emulsion solvent evaporation method. The entrapment efficiency of B-cell epitope peptide (BCEP) into PLG microparticles was 64%. In vitro studies showed B-cell epitope loaded PLG microparticles (BCEM) released the peptide in sustained profile and reached 64.9% efficiency by Day 25. Single oral immunization of mice with BCEM led to the significant induction of specific serum IgG and IgM anti-HB antibodies. After the termination of antibody induction, the orally immunized mice were infected with HBsAg, which resulted in the rapid production of antibodies against HBsAg as a result of secondary immune response. PLG microparticles formulation approach may have potential in increasing the efficacy of microparticulate systems for the oral administration of hepatitis B vaccine.

    View details for DOI 10.1016/j.vaccine.2006.04.011

    View details for Web of Science ID 000238638200007

    View details for PubMedID 16713035

  • Molecular chaperone alpha-crystallin prevents detrimental effects of neuroinflammation BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE Masilamoni, J. G., Jesudason, E. P., Baben, B., Jebaraj, C. E., Dhandayuthapani, S., Jayakumar, R. 2006; 1762 (3): 284-293

    Abstract

    Silver nitrate administration stimulates immune activation, inflammation and deterioration in cell function. It is well established that hippocampal and cortical tissue are susceptible to degeneration in responses to insult such as oxidative stress or infection. This study was designed to investigate the prophylactic effect of alpha-crystallin, a major chaperone lens protein comprising of alpha-A and alpha-B subunits in inflammation induced mice. Mice were divided into three groups (n=6 in each), control, inflammation and alpha-crystallin treated. Our result shows that alpha-crystallin pretreatment effectively diminished systemic inflammation induced glial fibrillary acidic protein (GFAP) and nuclear factor kappa B (NFkappaB) expression in the mice neocortex, reversed elevated intracellular calcium levels, acetylcholine esterase activity and depletion of glucose. Furthermore it also significantly prevented nitric oxide (P<0.05) and lipid peroxide production in the plasma, liver, neocortex and hippocampus of the inflammation-induced mice. In order to demonstrate the direct *OH and nitric oxide radical scavenging ability of alpha-crystallin, an In vitro experiment using primary astrocyte culture subjected to lipopolysaccharide (LPS), a well-known inflammatory stimuli were also carried out. This study reiterates that alpha-crystallin therapy may serve as a potent pharmacological agent in neuroinflammation.

    View details for DOI 10.1016/j.bbadis.2005.11.007

    View details for Web of Science ID 000235439000003

    View details for PubMedID 16443350

  • Lymphocyte toxicity of prion fragments JOURNAL OF BIOCHEMISTRY Murali, J., Jayakumar, R. 2006; 139 (3): 329-338

    Abstract

    Prion protein fragments that are extracted from the brains of patients with Gerstmann-Straussler-Scheinker disease are known to have stimulating action on circulating leukocytes. In particular, the amyloidogenic hydrophobic prion peptide HuPrP (113-127) AGAAAAGAVVGGLGG has been reported to be associated with significant cellular toxicity. In this paper we show that the self assembled form of HuPrP (113-127) and its valine rich domains viz. GAVVGGLG [HuPrP (119-126)] and VVGGLGG [HuPrP (121-127)] are toxic to peripheral lymphocytes. To explore the cytotoxic mechanism of these fragments, we studied 3-(4,5-dimethylthiazol-2yl)-2-5-diphenyltetrazolium bromide (MTT) reduction, reactive oxygen species (ROS) generation, calcium influx and raft sequestration of' peptide treated lymphocytes. Langmuir monolayer studies on these peptides showed a maximum lipid perturbing property of HuPrP (121-127) as compared to the other two fragments. MTT reduction assays on lymphocytes treated with peptides indicated that the prion peptide fibrils are relatively more toxic than freshly solubilized peptide preparations. Lymphocytes treated with HuPrP (121-127), HuPrP (113-127) and HuPrP (119-126) fibrils underwent 60%, 30% and 40% cell death, respectively. Abeta(1-42), HuPrP (119-126) and HuPrP (121-127) fibrils caused 4 fold increases in intracellular ROS as compared with control cells. However, HuPrP (113-127) fibrils lacked such a significant ROS generating activity, indicating that a subtle difference in sequence leads to a difference in the toxic mechanism in the cell. HuPrP (119-126) and HuPrP (121-127) fibrils also produced maximum raft sequestration and calcium influx. Taken together, these data suggest that the assemblage of prion fragments has significant toxic activity on peripheral lymphocytes, a finding with implications for controlling reactive lymphocytes in prion infected subjects.

    View details for DOI 10.1093/jb/mvj038

    View details for Web of Science ID 000237355200003

    View details for PubMedID 16567397

  • Characterization of polymeric poly(epsilon-caprolactone) injectable implant delivery system for the controlled delivery of contraceptive steroids. Journal of biomedical materials research. Part A Dhanaraju, M. D., Gopinath, D., Ahmed, M. R., Jayakumar, R., Vamsadhara, C. 2006; 76 (1): 63-72

    Abstract

    Contraceptive steroids levonorgestrel (LNG) and ethinyl estradiol (EE) have been encapsulated with poly(epsilon-caprolactone) (PCL) microspheres using a w / o /w double emulsion method. The microspheres prepared were smooth and spherical, with a mean size from 8-25 microm. In vitro release profiles of microspheres showed a trend of increasing initially at the first week, and thereafter the release was sustained. At the end of the seventh week LNG/EE from 1:5 and 1:10 PCL microspheres were 60 and 48%, 52 and 46%, respectively. An in vitro degradation study shows that at the 20th week the microspheres maintained the surface integrity. The PCL microspheres showed a triphasic in vivo release profile with an initial burst effect due to the release of the steroid adsorbed on the microsphere surface, a second sustained release phase due to the steroid diffusion through the pores or channels formed in the polymer matrix, and third phase due to polymer bioerodible. Histological examination of PCL microspheres injected intramuscularly into thigh muscle of a rat showed a minimal inflammatory reaction demonstrating that contraceptive steroid-loaded microspheres were biocompatible. The level of inflammatory cytokines determined by immunostaining for IL-1alpha, the tissue response to formulations at the first week was considered mild, whereas at the end of the 20th week the inflammatory response ceased. Thus, this study helped us to evaluate the feasibility of using these microspheres as a long-acting biodegradable drug delivery system for contraceptive steroids.

    View details for PubMedID 16108044

  • Peripheral nerve regeneration in cell adhesive peptide incorporated collagen tubes in rat sciatic nerve - early and better functional regain JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM Ahmed, M. R., Jayakumar, R. 2005; 10 (4): 390-391

    View details for Web of Science ID 000233267600010

    View details for PubMedID 16279992

  • The neuroprotective efficacy of alpha-crystallin against acute inflammation in mice BRAIN RESEARCH BULLETIN Masilamoni, J. G., Vignesh, S., Kirubagaran, R., Jesudason, E. P., Jayakumar, R. 2005; 67 (3): 235-241

    Abstract

    Acute inflammation activates macrophages or monocytes and subsequently releases several inflammatory cytokines and reactive oxygen and nitrogen species. These proinflammatory cytokines activate astrocytes and trigger neurodegenerative diseases. In this work, we chose to address the mechanistic aspects of alpha-crystallin's protective function in inflammation-triggered neurotoxicity in mice. Alpha-crystallin, a lens structural protein, comprising alpha-A and alpha-B subunits is an ubiquitous molecular chaperone, which have been shown to reduce reactive oxygen species (ROS) production and enhance cellular glutathione level in the acute inflammation-induced mice. Results show that the proinflammatory cytokines such as interleukin-1alpha (IL-1alpha) and tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) were significantly high (P<0.05) in the plasma, liver, cortex and hippocampus of inflammation-induced mice when compared to control. Alpha-crystallin pretreatment prevents inflammation-induced cytokines and NO production. In addition, a significant (P<0.05) reduction of dopamine (DA), 5-hydroxytryptamine (5-HT) and norepinephrine (NE) was also observed in the inflammation-induced mice. Nevertheless, their metabolites, such as 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-HIAA) increased significantly (P<0.05) as compared to control. The results indicate that alpha-crystallin pretreatment controls the inflammation-induced DA, 5-HT and NE catabolism and suggest that alpha-crystallin has the potential to act as an anti-inflammatory agent in the neuroprotective processes.

    View details for DOI 10.1016/j.brainresbull.2005.07.002

    View details for Web of Science ID 000232172200010

    View details for PubMedID 16144660

  • Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16 PROCESS BIOCHEMISTRY Kavitha, S., Senthilkumar, S., Gnanamanickam, S., Inayathullah, M., Jayakumar, R. 2005; 40 (10): 3236-3243
  • The protective effect of alpha-crystallin against acute inflammation in mice BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE Masilamoni, J. G., Jesudason, E. P., Bharathi, S. N., Jayakumar, R. 2005; 1740 (3): 411-420

    Abstract

    Acute inflammation can activate macrophages or monocytes and subsequently release several inflammatory cytokines and reactive oxygen species (ROS). Oxidative stress triggered by the production of ROS plays deleterious role leading to multiple organ failure. This study was designed to investigate the prophylactic effect of alpha-crystallin, a major chaperone lens protein comprising of alpha-A and alpha-B subunits in inflammation-induced mice. Mice were divided into three groups (n=6 in each): control, inflammation and alpha-crystallin-treated. Results show that ROS was significantly higher in the lymphocytes, hepatocytes and astrocytes (P<0.05) of inflammation-induced mice when compared to control, but no significant changes were observed in the alpha-crystallin-treated group. Increased level of lipid peroxidation (LPO) and decreased activities of antioxidant such as superoxide dismutase (SOD), catalase, glutathione peroxidase and glutathione were observed in the inflammation-induced mice when compared to control, whereas the activities of these were found to be normal followed by alpha-crystallin treatment. We also observed a reduction in reduced glutathione levels in hepatocytes of inflammation-induced mice, which were normalized on alpha-crystallin treatment. The in vitro study has shown that alpha-crystallin treatment not only suppresses the increase in LPO levels but also inhibits the lipid breakdown resulting from autooxidation in mouse cerebral cortex homogenate, and strongly suggests that alpha-crystallin therapy may serve as a potent pharmacological agent in systemic inflammation.

    View details for DOI 10.1016/j.bbadis.2004.11.002

    View details for Web of Science ID 000229948100012

    View details for PubMedID 15949709

  • Microwave irradiated collagen tubes as a better matrix for peripheral nerve regeneration BRAIN RESEARCH Ahmed, M. R., Vairamuthu, S., Shafiuzama, M., Basha, S. H., Jayakumar, R. 2005; 1046 (1-2): 55-67

    Abstract

    Collagen is one of the best materials used for nerve guide preparation due to its biocompatibility and desirable tensile strength. In this work, we have compared regeneration and functional reinnervation after sciatic nerve resection with bioresorbable crosslinked collagen guides in 10 mm gap. The crosslinking was carried out either with glutaraldehyde (GTA) or microwave irradiation (MWI). The multilayered collagen membrane used for nerve guides are prepared by lamellar evaporation technique. Functional evaluations of the regenerated nerves were performed by measuring the sciatic functional index (SFI), nerve conduction velocity (NCV), and electromyography (EMG). Transmission electron microscopic studies showed growth of axonal cable with fewer myelinated axons, Schwann cells and more unmyelinated axons present in the case of group treated with uncrosslinked collagen tubes after 1 month of implantation. However, we have observed more myelinated axons in the case of autograft, GTA, and MWI crosslinked collagen tube implants across the gap of 1 cm after the same period of implantation. Smaller myelinated fiber diameter was observed in the case of GTA crosslinked collagen tube group when compared with the autograft and MWI collagen tube groups. There were more myelinated axons during the 3rd and 6th months postoperatively using these conduits as substantiated by light microscopic studies of the regenerated nerve. The conduction velocity and recovery index improved significantly after 5 months reaching the normal values in the autograft and MWI crosslinked collagen groups compared to GTA and uncrosslinked collagen tubes.

    View details for DOI 10.1016/j.brainres.2005.03.022

    View details for Web of Science ID 000229898600007

    View details for PubMedID 15927550

  • Pexiganan-incorporated collagen matrices for infected wound-healing processes in rat. Journal of biomedical materials research. Part A Gopinath, D., Kumar, M. S., Selvaraj, D., Jayakumar, R. 2005; 73 (3): 320-331

    Abstract

    The use of peptide-based drugs is limited by their rapid degradability and toxicity at high concentration during their therapeutic application. These problems could be managed by the use of a peptide delivery agent for sustained release in the site of action. Collagen is one of the most proven biomaterials of good biocompatibility with an exceptional ligand encapsulating property. In this work, we have shown that pexiganan, an antimicrobial, 22-amino-acid peptide could be incorporated and delivered to the wound-healing site against bacterial strains Pseudomonas aeruginosa and Staphylococcus aureus. The release profiles of pexiganan collagen films with different collagen concentration were studied. The release of pexiganan from 2.5% w/w of collagen film showed a sustainable activity over 72 h with effective antimicrobial concentrations. Pexiganan-incorporated collagen (PIC)-treated groups were compared with open wound (OW)- and collagen film (CF)-treated rats. PIC-treated animals showed a diminishing level of bacterial growth as compared with OW- and CF-treated animals. The biochemical parameters such as hydroxyproline, protein, DNA, uronic acid, hexosamine, SOD, and catalase content in the granulation tissue of the healing wound revealed increased proliferation of cells involved in tissue reconstruction in PIC-treated groups when compared with OW- and CF-treated groups. Furthermore, spectroscopic studies suggested that collagen structure is not perturbed by pexiganan incorporation. This study provides rationale for application of collagen membrane for antimicrobial peptide delivery in infected wounds.

    View details for PubMedID 15800884

  • Role of fibrillar A beta(25-35) in the inflammation induced rat model with respect to oxidative vulnerability FREE RADICAL RESEARCH Masilamoni, J. G., Jesudason, E. P., Jesudoss, K. S., Murali, J., Paul, S. F., Jayakumar, R. 2005; 39 (6): 603-612

    Abstract

    The major pathological ramification of Alzheimer's disease (AD) is accumulation of beta-Amyloid (Abeta) peptides in the brain. An emerging therapeutic approach for AD is elimination of excessive Ass peptides and preventing its re-accumulation. Immunization is the most effective strategy in removing preexisting cerebral Abetas and improving the cognitive capacity as shown in transgenic mice model of AD. However, active immunization is associated with adverse effect such as encephalitis with perivascular inflammation and hemorrhage. Details about the mechanistic aspects of propagation of these toxic effects are matter of intense enquiry as this knowledge is essential for the understanding of the AD pathophysiology. The present work aimed to study the oxidative vulnerability in the plasma, liver and brain of the inflammation-induced rats subjected to Ass immunization. Induction of inflammation was performed by subcutaneous injection of 0.5?ml of 2% silver nitrate. Our present result shows that the proinflammatory cytokines such as IL1alpha and TNFalpha are increased significantly in the inflammation-induced, Abeta1-42, Abeta25-35 treated groups and inflammation with Abeta25-35 treated group when compared to control, complete Freund's adjuvant and Abeta35-25 treated groups. These increased proinflammatory cytokines concurrently releases significant amount of free radicals in the astrocytes of respected groups. The present result shows that nitric oxide (NO) level was significantly higher (P<0.001) in plasma, liver and brain of the rat subjected to inflammation, Abeta1-42, Abeta25-35 and inflammation with Abeta25-35 injected groups when compared to control. The increased level of lipid peroxides (LPO) (P<0.001) and decreased antioxidant status (P<0.05) were observed in the plasma, liver and brain of inflammation-induced group when compared to control. Our result shows that significant oxidative vulnerability was observed in the inflammation with Ass treated rats when compared to other groups. Based on our results, we suggest that immunization of AD patients with Ass should be done with caution as the increase in Ass could trigger the brain inflammation in uncontrollable level.

    View details for DOI 10.1080/10715760500117373

    View details for Web of Science ID 000229707900006

    View details for PubMedID 16036338

  • Red cell interactions with amyloid-beta(1-40) fibrils in a murine model NEUROBIOLOGY OF DISEASE Ravi, L. B., Poosala, S., Ahn, D., Chrest, F. J., Spangler, E. L., Jayakumar, R., Nagababu, E., Mohanty, J. G., Talan, M., Ingram, D. K., Rifkind, J. M. 2005; 19 (1-2): 28-37

    Abstract

    Vascular amyloidosis in Alzheimer's disease (AD) results in the exposure of red blood cells to beta-amyloid fibrils (A beta). The potential in vivo ramifications of this exposure have been investigated by injecting A beta(1-40) alone or A beta-bound mouse red blood cells into the circulation of C57BL/6 mice. Results indicate that when A beta(1-40) is injected alone, a transient uptake of the fibrils by red blood cells occurs in vivo. When A beta-bound red blood cells were injected, beta-amyloid is rapidly removed from these cells in vivo. Double-labeling experiments indicate that while some of the red blood cells bound to A beta(1-40) are removed from circulation, a major fraction of these cells remain in circulation even after A beta is removed. Immunohistochemistry of murine tissue samples obtained after sacrificing the animals suggests that within 1 h after injection of A beta(1-40) or A beta-bound red blood cells, A beta is found in spleen phagocytes and liver Kupffer cells. Heme staining further indicates that the binding of A beta(1-40) to red blood cells enhances red cell phagocytosis by the spleen.

    View details for DOI 10.1016/j.nbd.2004.11.004

    View details for Web of Science ID 000228672900004

    View details for PubMedID 15837558

  • Biotinylated GHK peptide incorporated collagenous matrix: A novel biomaterial for dermal wound healing in rats. Journal of biomedical materials research. Part B, Applied biomaterials Arul, V., Gopinath, D., Gomathi, K., Jayakumar, R. 2005; 73 (2): 383-391

    Abstract

    Matrikines are small peptide fragments of extracellular matrix proteins that display potent tissue repair activities. Difficulties in achieving sustained delivery of bioactive concentration of matrikines in the affected area limits their therapeutic use. The present study evaluates the effects biotinylated matrikine peptide (bio-glycyl-histidyl-lysine) incorporated collagen membrane for dermal wound healing processes in rats. Biotinylated peptide incorporated collagen matrix (PIC) showed better healing when compared to wounds treated with collagen matrix [CF (collagen film)] and without collagen [CR (control)]. Binding studies indicate that biotinylated GHK (Bio-GHK) binds effectively to the collagen matrix and red blood cell (RBC) membrane when compared with t-butyloxycarbonyl substituted GHK (Boc-GHK). Wound contraction, increased cell proliferation, and high expression of antioxidant enzymes in PIC treated group indicate enhanced wound healing activity when compared to CF and CR groups. Interestingly Bio-GHK incorporated collagen increases the copper concentration by ninefold at the wound site indicating the wound healing property of Bio-GHK can also be linked with both copper localization and matrikine activities. These results demonstrate the possibility of using Bio-GHK incorporated collagen film as a therapeutic agent in the wound healing process.

    View details for PubMedID 15803494

  • Spectroscopic studies on native and protofibrillar insulin JOURNAL OF STRUCTURAL BIOLOGY Murali, J., Jayakumar, R. 2005; 150 (2): 180-189

    Abstract

    The structure of insulin in amyloid fibrillar form has been recently shown as a well folded conformation using cryoelectron microscopy [Jimenez, J.L., Nettleton, E.J., Bouchard, M., Robinson, C.V., Dobson, C.M., Saibil H.R., 2002. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA. 99 9196-9201.]. Most of the amyloid aggregates elicit maximum toxicity in the protofibrillar (PF) intermediate state. Here, we describe PF intermediates of insulin are made-up monomers with flexible conformers. We also show protofibrils have three-dimensionally extended hydrophobic cavity to bind with 1-anilinonaphthalene-8-sulphonate (ANS) molecules. Energy transfer measurement revealed that ANS dye binding site of PF is within the range of FRET distance of insulin tyrosine residues. Significant proportion of beta-sheet, helical, and turn structures in the PF form indicate conformational dynamics in the folded chain of insulin in the PF assembled form. Though the conformational flexibility is noticeably present in the assembly, addition of GdnHCl could completely unfold PF into disordered structure suggesting structural "zipping" in the PF form. We have also shown that helical conformer inducing solvent 2,2,2-trifluoroethanol (TFE) could dissociate the PF aggregate indicating possible involvement of beta-sheets in contributing to PF stability.

    View details for DOI 10.1016/j.jsb.2005.02.009

    View details for Web of Science ID 000229157600006

    View details for PubMedID 15866741

  • The protective role of DL-alpha-lipoic acid in biogenic amines catabolism triggered by A beta amyloid vaccination in mice BRAIN RESEARCH BULLETIN Jesudason, E. P., Masilamoni, J. G., Kirubagaran, R., Davis, G. D., Jayakumar, R. 2005; 65 (4): 361-367

    Abstract

    The major pathological consequence of Alzheimer disease (AD) is accumulation of beta-amyloid (Abeta) peptide fibrillar plaque in the brain and subsequent inflammatory reaction associated with the surrounding cells due to the presence of these aggregates. Inflammation is the major complication associated with Abeta peptide vaccination. Abeta peptide activated T-helper cells are shown to enhance the existing-inflammatory conditions in the brain and other organs of AD patients. Hence systematic studies on potential approaches that will prevent inflammation during the vaccination are highly desired. DL-alpha-lipoic acid (LA), an antioxidant with known function as cofactor in mitochondrial dehydrogenase reactions, will be a good candidate to annul the oxidative damage due to vaccination triggered inflammation. For the first time, levels of principal neurotransmitters and their major metabolites in hippocampus and neocortex regions of brain are quantified to find out the level of inflammation. We have used high performance liquid chromatography with electro chemical detection (HPLC-EC) for monitoring neurotransmitter levels. We have shown a significant (p<0.05) reduction of 5-hydroxytryptamine (5-HT), dopamine (DA) and norepinephrine (NE) in the systemic inflammation induced (SI), vaccinated (VA) and inflammation induced vaccinated (IV) mice. Nevertheless their metabolites such as 5-hydroxyindole acetic acid (5-HIAA) and homovanillic acid (HVA) are significantly (p<0.05) increased when compared with control. Interestingly, antioxidant LA treated mice with systemic inflammation (IL), vaccinated (VL) and inflammation induced vaccinated (IVL) mice exhibited enhanced level of 5-HT, DA and NE and the concentration of 5-HIAA and HVA gradually returned to normal. These results suggest a possible new way for monitoring and modifying the inflammation and thereby preventing Abeta vaccination mediated tissue damage.

    View details for DOI 10.1016/j.brainresbull.2005.01.010

    View details for Web of Science ID 000228678500011

    View details for PubMedID 15811602

  • Initial upregulation of growth factors and inflammatory mediators during nerve regeneration in the presence of cell adhesive peptide-incorporated collagen tubes JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM Ahmed, M. R., Basha, S. H., Gopinath, D., Muthusamy, R., Jayakumar, R. 2005; 10 (1): 17-30

    Abstract

    Neurotrophic factors play an important modulatory role in axonal sprouting during nerve regeneration involving the proliferation of hematogenous and Schwann cells in damaged tissue. We have exposed lesioned sciatic nerves to a collagen prosthesis with covalently bonded small cell adhesive peptides Arg-Gly-Asp-Ser (RGDS), Lys-Arg-Asp-Ser (KRDS), and Gly-His-Lys (GHK) to study local production of growth factors and cytokines in the regenerating tissues. Western/enzyme-linked immunosorbent assay (ELISA) studies were performed after 10 days of regeneration, when the tubular prosthesis is filled with fibrous matrix infiltrated by hematogenous cells and proliferating Schwann cells with growth factors produced locally. Regeneration was also analyzed by morphometrical methods after 30 days. The quantification of growth factors and proteins by ELISA revealed that there was an enhanced expression of the neurotrophic factors nerve growth factor (NGF) and neurotrophins (NT-3 and NT-4) in the regenerating tissues. This was further established by Western blot to qualitatively analyze the presence of the antigens in the regenerating tissues. Schwann cells were localized in the regenerating tissues using antibodies against S-100 protein. Other growth factors including growth-associated protein 43 (GAP-43), apolipoprotein E (Apo E), and pro-inflammatory cytokine like interleukin-1alpha (IL-1alpha) expression in the peptide groups were evaluated by ELISA and confirmed by Western blotting. Cell adhesive integrins in the proliferating cells were localized using integrin-alpha V. The combined results suggest that the early phase of regeneration of peripheral nerves in the presence of peptide-incorporated collagen tubes results in the enhanced production of trophic factors by the recruited hematogenous cells and Schwann cells, which in turn help in the secretion of certain vital trophic and tropic factors essential for early regeneration. Furthermore, hematogenous cells recruited within the first 10 days of regeneration help in the production of inflammatory mediators like interleukins that in turn stimulate Schwann cells to produce NGF for axonal growth.

    View details for Web of Science ID 000227317100004

    View details for PubMedID 15703015

  • Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation MOLECULAR CELL Bennett, E. J., Bence, N. F., Jayakumar, R., Kopito, R. R. 2005; 17 (3): 351-365

    Abstract

    The highly conserved ubiquitin-proteasome system (UPS) controls the stability of most nuclear and cytoplasmic proteins and is therefore essential for virtually all aspects of cellular function. We have previously shown that the UPS is impaired in the presence of aggregated proteins that become deposited into cytoplasmic inclusion bodies (IBs). Here, we report that production of protein aggregates specifically targeted to either the nucleus or cytosol leads to global impairment of UPS function in both cellular compartments and is independent of sequestration of aggregates into IBs. The observation of severe UPS impairment in compartments lacking detectable aggregates or aggregation-prone protein, together with the lack of interference of protein aggregates on 26S proteasome function in vitro, suggests that UPS impairment is unlikely to be a consequence of direct choking of proteasomes by protein aggregates. These data suggest a common proteotoxic mechanism for nuclear and cytoplasmic protein aggregates in the pathogenesis of neurodegenerative disease.

    View details for DOI 10.1016/j.molcel.2004.12.021

    View details for Web of Science ID 000226905200005

    View details for PubMedID 15694337

  • The protective role of DL-alpha-lipoic acid in the oxidative vulnerability triggered by A ss-amyloid vaccination in mice MOLECULAR AND CELLULAR BIOCHEMISTRY Jesudason, E. P., Masilamoni, J. G., Jesudoss, K. S., Jayakumar, R. 2005; 270 (1-2): 29-37

    Abstract

    Recent reports indicate that beta-amyloid peptide (Abeta) vaccine based therapy for Alzheimer's disease (AD) may be on the horizon. There are however, concerns about the safety of this approach. Immunization with Abeta has several disadvantages, because it crosses the blood brain barrier and cause inflammation and neurotoxicity. The present work is aimed to study the protective effective of alpha-lipoic acid (LA) in the oxidative vulnerability of beta-amyloid in plasma, liver, spleen and brain, when Abeta fibrils are given intraperitoneally in inflammation induced mice. Result shows that reactive oxygen species (ROS) in the astrocytes of inflammation induced mice along with Abeta (IA) has shown 2.5-fold increase when compared with LA treated mice. The increased level of lipid peroxidase (LPO) (p < 0.05) and decreased antioxidant status (p < 0.05) were observed in the plasma, liver, spleen and brain of LA induced mice when compared with LA treated mice. Data shows that there were no significant changes observed between the control and LA treated mice. Our biochemical and histological results highlight that significant oxidative vulnerability was observed in IA treated mice, which was prevented by LA therapy. Our findings suggest that the antioxidant effect of LA when induced with Abeta may serve as a potent therapeutic tool for inflammatory AD models.

    View details for DOI 10.1007/s11010-005-3301-z

    View details for Web of Science ID 000227736000004

    View details for PubMedID 15792351

  • Crystal structure and conformation of N-(t-Butoxycarbonyl)-L-isoleucyl-L-valine methyl ester (Boc-Ile-Val-OMe) MOLECULAR CRYSTALS AND LIQUID CRYSTALS Sukumar, N., Sony, S. M., Ponnuswamy, M. N., Jayakumar, R. 2005; 428: 77-85
  • The structure of antimicrobial pexiganan peptide in solution probed by Fourier transform infrared absorption, vibrational circular dichroism, and electronic circular dichroism spectroscopy BIOPOLYMERS Shanmugam, G., Polavarapu, P. L., Gopinath, D., Jayakumar, R. 2005; 80 (5): 636-642

    Abstract

    Pexiganan (Gly-Ile-Gly-Lys-Phe-Leu-Lys-Lys-Ala-Lys-Lys-Phe-Gly-Lys-Ala-Phe-Val-Lys-Ile-Leu-Lys-Lys), a 22 amino acid peptide, is an analogue of the magainin family of antimicrobial peptides present in the skin of the African clawed frog. Conformational analysis of pexiganan was carried out in different solvent environments for the first time. Organic solvents, trifluoroethanol (TFE) and methanol, were used to study the secondary structural preferences of this peptide in the membrane-mimicking environments. In addition, aqueous (D2O) and dimethyl sulfoxide (DMSO) solutions were also investigated to study the role of hydrogen bonding involved in the secondary structure formation. Fourier transform infrared absorption, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) measurements were carried out under the same conditions to ascertain the conformational assignments in different solvents. All these spectroscopic measurements suggest that the pexiganan peptide has the tendency to adopt different structures in different environments. Pexiganan appears to adopt an alpha-helical conformation in TFE, a sheet-stabilized beta-turn structure in methanol, a random coil with beta-turn structure in D2O, and a solvated beta-turn structure in DMSO.

    View details for DOI 10.1002/bip.20132

    View details for Web of Science ID 000232334800003

    View details for PubMedID 15657879

  • Assemblages of prion fragments: novel model systems for understanding amyloid toxicity JOURNAL OF STRUCTURAL BIOLOGY Satheeshkumar, K. S., Murali, J., Jayakumar, R. 2004; 148 (2): 176-193

    Abstract

    We report the conformational and toxic properties of two novel fibril-forming prion amyloid sequences, GAVVGGLG (PrP(119-126)) and VVGGLGG (PrP(121-127)). The conformational preferences of these fragments were studied in differing microenvironments of TFE/water mixtures and SDS solution. Interestingly, with an increase in TFE concentration, PrP(119-126) showed a helical conformational propensity, whereas PrP(121-127) adopted a more random coil structure. In 5% SDS, PrP(119-126) showed more alpha-helical content than in TFE solution, and PrP(121-127) exhibited a predominantly random coil conformation. However, both peptides took a random coil conformation in water, and over time the random coil transformed into a beta-sheet structure with a significant percentage of helical conformation and beta-turn structure in PrP(119-126) and PrP(121-127), respectively, as observed with CD spectroscopy. The aged fibrils of PrP(119-126) were insoluble in SDS, and PrP(121-127) was extractable with SDS solution. These fibrils were characterized by transmission electron microscopy. Both PrP(119-126) and PrP(121-127) formed stable monolayer's consisting of multimeric assemblages at the air-water interface. Monomeric PrP(119-126) was more toxic to astrocytes than the control Abeta peptide; however, the fibrillar form of PrP(119-126) was less toxic to astrocytes. PrP(121-127) elicited moderate toxicity in both soluble and fibrillar forms on astrocytes. Furthermore, quenching experiments using acroyl-labeled PrP(119-126) and PrP(121-127) with eosin-labeled synaptosomal membrane revealed that these prion fragments bind to anion-exchange protein. The binding of PrP(119-126) and PrP(121-127) with a membrane microdomain (lipid raft) was also analyzed using pyrenated derivatives. We conclude that the formation of PrP(119-126) and PrP(121-127) fibrils is a concentration-dependent process that involves coil to sheet conversion with aging. PrP(119-126), the sequence with intrinsic helical propensity, is more toxic in monomer form, and the fibril formation in this case seems to be protective to cells. For PrP(121-127), the SDS-soluble fibrils are more cytotoxic, indicating that a higher order assemblage structure is required for cytotoxic activity of this peptide.

    View details for DOI 10.1016/j.jsb.2004.05.006

    View details for Web of Science ID 000224759000004

    View details for PubMedID 15477098

  • Cytotoxic and membrane perturbation effects of a novel amyloid forming model peptide poly(leucine-glutamic acid) JOURNAL OF BIOCHEMISTRY Jayakumar, R., Murali, J., Koteeswari, D., Gomathi, K. 2004; 136 (4): 457-462

    Abstract

    In the present study we have elucidated the toxicity of a novel amyloid forming model peptide, Poly (leucine-glutamic acid). The toxicity of the fibrils prepared from this peptide was analyzed in peripheral blood lymphocytes (PBL). The MTT reduction assay revealed that the viability of PBL decreases significantly upon treatment with Poly(leucine-glutamic acid) (Poly [LE]). Enhanced DCFH-DA fluorescence in treated cells suggests that peptide toxicity is probably mediated by the formation of free radicals. In vivo and in vitro biochemical studies indicated that Poly [LE] inactivates the antioxidant system of cells. Perturbation of Poly [LE] in a membrane lipid environment was assessed by circular dichroism (CD) using phosphotidyl choline-cholesterol bilayers. The CD results revealed that LE enhances its beta sheet content in a bilayer environment. Sequestration of Poly [LE] in lipid rafts demonstrates that it has a binding cleft similar to Abeta in lymphocyte raft domains. Nuclear membrane binding studies showed that Poly [LE] binds to nuclear membranes and may cause genotoxicity.

    View details for DOI 10.1093/jb/mvh156

    View details for Web of Science ID 000226416900008

    View details for PubMedID 15625314

  • Influence of manufacturing parameters on development of contraceptive steroid loaded injectable microspheres CHEMICAL & PHARMACEUTICAL BULLETIN Dhanaraju, M. D., Jayakumar, R., Vamsadhara, C. 2004; 52 (8): 976-979

    Abstract

    The main objective of this work was to develop a system consisting of polymeric microspheres loaded with steroid drugs. The drugs were encapsulated using biodegradable poly(lactide-co-glycolide) (PLG) and poly(epsilon-caprolactone) (PCL) by double emulsion solvent evaporation method. The lipophilic drugs, levonorgestrel and ethinylestradiol were made soluble by adding ethanol/water mixture. The effects of parameters like polymer concentration and stabilizer concentration were studied on the size, size distribution, surface properties and loading efficiencies of microspheres. The formulated microspheres were smooth, spherical and uniform in shape and size. Fourier transformed infrared spectroscopy and differential scanning calorimetry studies seemed to confirm the absence of chemical interaction between the drugs and the polymers, while the drugs were dispersed in the polymer. The increase in polymer concentrations increased the size as well as the loading efficiency of microspheres. Data obtained in this study demonstrated that the PLG/PCL microspheres may be a suitable polymeric carrier for long acting injectable drug delivery.

    View details for Web of Science ID 000223208200015

    View details for PubMedID 15304994

  • Influence of beta-amyloid fibrils on the interactions between red blood cells and endothelial cells NEUROLOGICAL RESEARCH Ravi, L. B., Mohanty, J. G., Chrest, F. J., Jayakumar, R., Nagababu, E., Usatyuk, P. V., Natarajan, V., Rifkind, J. A. 2004; 26 (5): 579-585

    Abstract

    Alzheimer's disease is associated with vascular amyloidosis. As blood flows through the microcirculation, red blood cells (RBCs) come in contact with the vasculature. RBCs as well as endothelial cells (ECs) are known to bind beta amyloid fibrils. This suggests that a potential effect of amyloidosis may involve the interactions of RBCs with ECs lining the wall of the blood vessels mediated by amyloid fibrils. We have studied the effect of beta-amyloid peptide[1-40] (Abeta1-40) fibrils on the interactions of murine RBCs with ECs derived from bovine lung microvascular endothelium (BLMVEC) as well as bovine pulmonary arterial endothelium (BPAEC) in culture. We show that the initial incorporation of Abeta fibrils onto either RBCs or ECs cause RBCs to adhere to the ECs with greater affinity for the microvascular cells than the arterial cells. In addition, there is a transfer of Abeta fibrils between the RBCs and the ECs. Both the transfer and adhesion occurs when the amyloid fibrils are on the ECs or on the RBCs. However, with the amyloid fibrils on the RBCs, the adhesion and the transfer are greater than with the fibrils on the ECs. These results suggest that amyloidosis may affect the flow of RBCs through the microcirculation and that RBCs may play a role in propagating amyloidosis through the vasculature.

    View details for DOI 10.1179/016164104225016227

    View details for Web of Science ID 000222545100018

    View details for PubMedID 15265278

  • Multilayered peptide incorporated collagen tubules for peripheral nerve repair BIOMATERIALS Ahmed, M. R., Venkateshwarlu, U., Jayakumar, R. 2004; 25 (13): 2585-2594

    Abstract

    Successful nerve regeneration process was achieved with improved mechanical strength by crosslinking tubular nerve guides made up of collagen. The multilayered collagen sheets were prepared from laminar evaporation of collagen solution. Scanning electron micrograph of the collagen tubes crosslinked with glutaraldehyde (GTA), microwave irradiation showed porous, fibrillar structures of collagen filaments in these matrices. The mechanical property of the crosslinked collagen tubes was carried out by tensile strength measurements. Fourier transform infrared spectra of the collagen films show that the native triple helicity was unaltered during multilayered preparation. It was observed that the structural integrity is unaltered during the multilayer preparation. Microscopic analysis indicates that the tubule surface acts as a surface of adherence and proliferation for the sprouting axons from the cut proximal nerve stumps. Solute diffusion studies on these tubes indicate that they are highly porous to wide range of molecular sizes during regeneration. Among the two types of crosslinking, the microwave irradiated collagen conduits results in ample myelinated axons compared with GTA group, where we observed more unmyelinated axons.

    View details for DOI 10.1016/j.biomaterials.2003.09.075

    View details for Web of Science ID 000188881500016

    View details for PubMedID 14751744

  • Alpha-crystallin-incorporated collagen matrices as an aid for dermal wound healing. Journal of biomedical materials research. Part B, Applied biomaterials Ahmed, M. R., Gopinath, D., Gomathi, K., Sehgal, P. K., Jayakumar, R. 2004; 69 (2): 241-248

    Abstract

    This study evaluated the effects of noncovalently incorporated crystallin into the collagen matrix for dermal wound-healing processes in rats. Crystallin-incorporated collagen matrix (CIC) showed better healing when compared to wounds treated with collagen matrix (CS) and without collagen (CR). Biochemical parameters and histological analysis revealed that increased wound contraction enhanced cell proliferation and efficient radical scavenging in the CIC group. The higher shrinkage temperature of CIC films when compared to CS groups suggested increased hydrothermal stability for the former material. An in vitro release study of CIC has showed sustained and time-dependent release of crystallin from the collagen matrix. These results demonstrate the possibility of using crystallin as therapeutic protein in the wound-healing process.

    View details for PubMedID 15116414

  • Dermal wound healing processes with curcumin incorporated collagen films BIOMATERIALS Gopinath, D., Ahmed, M. R., Gomathi, K., Chitra, K., Sehgal, P. K., Jayakumar, R. 2004; 25 (10): 1911-1917

    Abstract

    The wound healing process involves extensive oxidative stress to the system, which generally inhibits tissue remodeling. In the present study, an improvement in the quality of wound healing was attempted by slow delivery of antioxidants like curcumin from collagen, which also acts as a supportive matrix for the regenerative tissue. Curcumin incorporated collagen matrix (CICM) treated groups were compared with control and collagen treated rats. Biochemical parameters and histological analysis revealed that increased wound reduction, enhanced cell proliferation and efficient free radical scavenging in CICM group. The higher shrinkage temperature of CICM films suggests increased hydrothermal stability when compared to normal collagen films. Spectroscopic studies revealed that curcumin was bound to the collagen without affecting its triple helicity. Further we adopted the antioxidant assay using 2,2'-azobisisobutyronitrile to assess in vitro antioxidant activity of CICM. The antioxidant studies indicated that CICM quenches free radicals more efficiently. This study provides a rationale for the topical application of CICM as a feasible and productive approach to support dermal wound healing.

    View details for DOI 10.1016/S0142-9612(03)00625-2

    View details for Web of Science ID 000188706000020

    View details for PubMedID 14738855

  • Structure and conformation of N-(t-butoxycarbonyl)-L-isoleucyl-L-leucine methyl ester MOLECULAR CRYSTALS AND LIQUID CRYSTALS Thirumuruhan, R. A., Sony, S. M., Shanmugam, G., Ponnuswamy, M. N., Jayakumar, R. 2004; 414: 39-48
  • Structural analysis of amyloid beta peptide fragment (25-35) in different microenvironments BIOPOLYMERS Shanmugam, G., Jayakumar, R. 2004; 76 (5): 421-434

    Abstract

    Amyloid beta (Abeta) peptides are one of the classes of amphiphilic molecules that on dissolution in aqueous solvents undergo interesting conformational transitions. These conformational changes are known to be associated with their neuronal toxicity. The mechanism of structural transition involved in the monomeric Abeta to toxic assemblage is yet to be understood at the molecular level. Early results indicate that oriented molecular crowding has a profound effect on their assemblage formation. In this work, we have studied how different microenvironments affect the conformational transitions of one of the active amyloid beta-peptide fragments (Abeta(25-35)). Spectroscopic techniques such as CD and Fourier transform infrared spectroscopy were used. It was observed that a stored peptide concentrates on dissolution in methanol adopts a minor alpha-helical conformation along with unordered structures. On changing the methanol concentration in the solvated film form, the conformation switches to the antiparallel beta-sheet structure on the hydrophilic surface, whereas the peptide shows transition from a mixture of helix and unordered structure into predominantly a beta-sheet with minor contribution of helix structure on the hydrophobic surface. Our present investigations indicate that the conformations induced by the different surfaces dictate the gross conformational preference of the peptide concentrate.

    View details for DOI 10.1002/bip.20131

    View details for Web of Science ID 000224937700005

    View details for PubMedID 15468066

  • Calix[8]arene-mediated self-assembly of tetrapeptide H-Leu-Leu-Ile-Leu-OMe JOURNAL OF MOLECULAR RECOGNITION Satheeshkumar, K. S., Vasu, G., Vishalakshi, V., Moni, M. S., Jayakumar, R. 2004; 17 (1): 67-75

    Abstract

    Conformational analysis of peptide 1, H-Leu-Leu-Ile-Leu-OMe on complexing with macro cycle calix[8]arene has been carried out using (1)H-NMR and FTIR spectroscopic techniques. Stoichiometry of the complex formed in the 1:8 ratio was evidenced by a Job plot. NMR studies of the above peptide show a marked downfield shift and an increase in (3)J values for NH resonances on complexing with calix[8]arene. The characteristic NOE connectivity between N(i+1)H and C(ialpha)H confirm beta-sheet conformation in the complexed state. Both (1)H-NMR and FTIR results indicate that the alpha-amino group of Leu I is proximal to the macrocycle and is involved in hydrogen bond formation with phenolic hydrogen atom of the calix[8]arene. This suggests that calix[8]arene provides a suitable platform for peptide 1 to self-assemble in a parallel beta-sheet conformation. The nature of calix[8]arene interaction with peptide 1 has been studied using dynamic NMR studies, which concludes that a bifurcated hydrogen bonding interaction exists in the molecular interfaces of the assembly.

    View details for DOI 10.1002/jmr.629

    View details for Web of Science ID 000188851600007

    View details for PubMedID 14872539

  • Peripheral nerve regeneration in RGD peptide incorporated collagen tubes BRAIN RESEARCH Rafiuddin, M., Jakakumar, A. R. 2003; 993 (1-2): 208-216

    Abstract

    This paper describes the regeneration of lesioned sciatic nerve with collagen tubes incorporated with RGD cell-adhesive peptide. Collagen implants of 14 mm were grafted to bridge a gap length of 10 mm nerve defect in a rat model. The regenerated tissues were analyzed histomorphologically. The number of myelinated axons in the regenerated mid-graft of the RGD peptide incorporated groups was statistically significant (p<0.05) than control collagen tube and autograft control after 30 days postoperatively. After 90 days of implantation, the mean counts were still statistically significant in the case of RGD peptide group than control collagen and autograft groups. Immunofluorescence studies demonstrated the staining of S100 proteins in the peripherally located cells indicating the proliferation of Schwann cells in the early days of regeneration. The staining pattern of integrin-alphaV was observed mostly in the perineurial regions in close proximity to the RGD peptide incorporated collagen tubes. Other studies like sciatic functional index, conduction velocity at 90 days postoperatively suggest complete regeneration of lesioned nerves with RGD incorporated collagen implants.

    View details for DOI 10.1016/j.brainres.2003.08.057

    View details for Web of Science ID 000187249400024

    View details for PubMedID 14642848

  • Preparation and characterization of injectable microspheres of contraceptive hormones INTERNATIONAL JOURNAL OF PHARMACEUTICS Dhanaraju, M. D., Vema, K., Jayakumar, R., Vamsadhara, C. 2003; 268 (1-2): 23-29

    Abstract

    Present study describes the development of a new formulation of levonorgestrel and ethinylestradiol based on double emulsion-solvent evaporation technique using poly(epsilon-caprolactone) (PCL) as biodegradable polymer. The effect of polymer concentration on microspheres and entrapment of drug into microspheres were studied. PCL was selected because of its hydrophobicity and advantages over other biodegradable polymers. Characterization of biodegradable polymer used for controlled drug delivery is essential to ensure reproducibility of in vitro and in vivo performances. The selected characterisation techniques established for PCL microspheres include its loading and entrapment efficiencies, DSC to analyse thermal behaviour, SEM to observe surface morphology, drug content of microspheres and in vitro release of drugs from microspheres. The SEM reports showed that microspheres were with smooth surface and DSC thermograms revealed no interaction between drug and polymer. The entrapment was found to be 58 and 47% for 1:10 and 1:5 batches and in vitro release studies showed that about 69.7% of LNG and 66.7% of EE from 1:10 batch and about 80% of LNG and 75.5% of EE from 1:5 batch for 150 days.

    View details for DOI 10.1016/j.ijpharm.2003.08.011

    View details for Web of Science ID 000187235100003

    View details for PubMedID 14643973

  • Effect of osmolyte on the micellization of SDS at different temperatures LANGMUIR Inayathullah, N. M., Jasmine, G. J., Jayakumar, R. 2003; 19 (22): 9545-9547

    View details for DOI 10.1021/la034403z

    View details for Web of Science ID 000186177200068

  • Monolayer formation of short helical turn forming peptide derivatives at the air-water and air-solid interfaces CHEMICAL PHYSICS LETTERS Ganesh, S., Jayakumar, R. 2003; 380 (5-6): 681-688
  • Structural transitions involved in a novel amyloid-like beta-sheet assemblage of tripeptide derivatives BIOPOLYMERS Ganesh, S., Jayakumar, R. 2003; 70 (3): 336-345

    Abstract

    Self-assembly of two tripeptide derivatives containing three nonpolar isoleucine moieties and polar oxyethylene groups are studied in methanol. Peptide A [CH3(OCH2CH2)3OCH2CO(Ile)3OCH3] and peptide B [CH3(OCH2CH2)3OCH2CO(Ile)3NH (CH2CH2O)3CH3] take a mixture of unordered and helical conformation at low concentration (8.5 x 10(-4) M). However, at high concentration (2 x 10(-3) M), both the peptide showed significant increase in the helical conformation. An interesting conformational transition of peptides A and B at various methanol contents was observed in the solvated films of these compounds by spectroscopic methods like the far-uv circular dichroism and Fourier transform infrared (FT-IR) techniques. Peptide B, which contains more polar oxyethylene groups than A, showed a highly cooperative conformational transition when the methanol content was decreased. This transition was characterized by a large increase of beta-sheet, retaining a alpha-helical contribution. Peptide A showed a conformational transition resulting in a beta-sheet in the aggregated state. From the CD spectra, the ratio in the ellipticity indicates that peptide B forms twisted antiparallel beta-sheet conformation, whereas peptide A takes a parallel beta-sheet conformation. The results obtained in this work indicates the role of polar derivatization on the conformational preference of peptides having similar sequence.

    View details for DOI 10.1002/bip.10474

    View details for Web of Science ID 000186435800005

    View details for PubMedID 14579306

  • Spectroscopic investigation on gel-forming beta-sheet assemblage of peptide derivatives BIOPOLYMERS Ganesh, S., Prakash, S., Jayakumar, R. 2003; 70 (3): 346-354

    Abstract

    The conformational studies of peptide derivatives A and B in a gel state were studied by using circular dichroism (CD), Fourier transformed infrared (FTIR), and fluorescence spectroscopic techniques. Birefringence and electron microscopic studies were carried out to characterize the morphological aspects of the fibrils in the gel. The FTIR spectra of the peptides show the absence of free NH in the gel state, implying that the intermolecular hydrogen-bond formation is the driving force for the aggregation. The CD spectrum of the peptide gels shows the presence of antiparallel and parallel beta-sheet conformation for peptide derivatives A and B, respectively. Electron microscopic studies (EM) of the peptide derivatives A and B reveal that peptide A formed rigid, rod-like structures without cross-linking and peptide B formed loose fibrils organized into highly noncovalently cross-linked mesh-like structural aggregates. Peptide A was much more soluble in alcoholic solvents than peptide B, and no birefringence was observed with Congo red (CR) staining in the temperature range of 0-80 degrees C. The spectroscopic studies indicate that peptide B consists of domains having a significant amount of beta-sheet structure and exhibiting golden yellow birefringence between 53 and 56 degrees C when stained with Congo red. On the other hand, peptide A gives no evidence of birefringence under polarized light. Fluorescence probe binding studies with pyrene in gel state with peptides A and B indicates the polarity in the interior of the aggregates. The data presented in the present work indicate that peptide B forms fibrils, which is similar to amyloid aggregates that are present in biological systems.

    View details for DOI 10.1002/bip.10493

    View details for Web of Science ID 000186435800006

    View details for PubMedID 14579307

  • Interaction of collagen with corilagin COLLOID AND POLYMER SCIENCE Andrews, M. E., Murali, J., Muralidharan, C., Madhulata, W., Jayakumar, R. 2003; 281 (8): 766-770
  • Increased neuronal nitric oxide synthase (nNOS) activity triggers picrotoxin-induced seizures in rats and evidence for participation of nNOS mechanism in the action of antiepileptic drugs BRAIN RESEARCH Rajasekaran, K., Jayakumar, R., Venkatachalam, K. 2003; 979 (1-2): 85-97

    Abstract

    Increased neuronal nitric oxide synthase (nNOS) activity was observed during the prodromal period of seizures in various rat brain regions following administration of GABA(A) receptor antagonist, picrotoxin (PCT). Pretreatment with the selective nNOS inhibitor 7-nitroindazole (7-NI), dose- and time-dependently delayed the onset of clonus with a corresponding decrease in nNOS activity. The threshold dose of antiepileptic drugs (AEDs; diazepam, phenobarbitone and gabapentin) have potentiated the anticonvulsant action by pretreatment with graded doses of 7-NI. The increase in efficacy of anticonvulsant action correlated with a corresponding decrease of PCT-evoked increase in nNOS activity. The present data support a role for abnormal nNOS activity in mechanisms that trigger seizures and suggest a possible NO-mediated interplay between GABA(A) and glutamate receptors. The results of the present study provide evidence for a trigger role of neuronally produced NO in epileptogenesis induced by PCT and the participation of nNOS inhibitory mechanisms in the action of AEDs.

    View details for DOI 10.1016/S0006-8993(03)02878-6

    View details for Web of Science ID 000184397100012

    View details for PubMedID 12850575

  • Conformational polymorphism of the amyloidogenic peptide homologous to residues 113-127 of the prion protein BIOPHYSICAL JOURNAL Satheeshkumar, K. S., Jayakumar, R. 2003; 85 (1): 473-483

    Abstract

    Conformational transitions are thought to be the prime mechanism of amyloid formation in prion diseases. The prion proteins are known to exhibit polymorphic behavior that explains their ability of "conformation switching" facilitated by structured "seeds" consisting of transformed proteins. Oligopeptides containing prion sequences showing the polymorphism are not known even though amyloid formation is observed in these fragments. In this work, we have observed polymorphism in a 15-residue peptide PrP (113-127) that is known to form amyloid fibrils on aging. To see the polymorphic behavior of this peptide in different solvent environments, circular dichroism (CD) spectroscopic studies on an aqueous solution of PrP (113-127) in different trifluoroethanol (TFE) concentrations were carried out. The results show that PrP (113-127) have sheet preference in lower TFE concentration whereas it has more helical conformation in higher TFE content (>40%). The structural transitions involved in TFE solvent were studied using interval-scan CD and FT-IR studies. It is interesting to note that the alpha-helical structure persists throughout the structural transition process involved in amyloid fibril formation implicating the involvement of both N- and C-terminal sequences. To unravel the role of the N-terminal region in the polymorphism of the PrP (113-127), CD studies on another synthetic peptide, PrP (113-120) were carried out. PrP(113-120) exhibits random coil conformation in 100% water and helical conformation in 100% TFE, indicating the importance of full-length sequence for beta-sheet formation. Besides, the influence of different chemico-physical conditions such as concentration, pH, ionic strength, and membrane like environment on the secondary structure of the peptide PrP (113-127) has been investigated. At higher concentration, PrP (113-127) shows features of sheet conformation even in 100% TFE suggesting aggregation. In the presence of 5% solution of sodium dodecyl sulfate, PrP (113-127) takes high alpha-helical propensity. The environment-dependent conformational polymorphism of PrP (113-127) and its marked tendency to form stable beta-sheet structure at acidic pH could account for its conformation switching behavior from alpha-helix to beta-sheet. This work emphasizes the coordinative involvement of N-terminal and C-terminal sequences in the self-assembly of PrP (113-127).

    View details for Web of Science ID 000183820600045

    View details for PubMedID 12829502

  • Quercetin incorporated collagen matrices for dermal wound healing processes in rat BIOMATERIALS Gomathi, K., Gopinath, D., Ahmed, M. R., Jayakumar, R. 2003; 24 (16): 2767-2772

    Abstract

    We have been developing antioxidants incorporated collagen matrix as a novel biomaterial for various biomedical applications. In this study we made use of quercetin incorporated collagenous matrix for dermal wound healing in rat. Quercetin incorporated collagen (QIC) treated groups were compared with control and collagen (CS) treated animals. QIC treated animal showed a better healing when compared to control and CS treated wound. The biochemical parameters like hydroxyproline, protein, uronic acid content in the healing wound, revealed that there is an increase in proliferation of cells in quercetin treated groups when compared to CS group and there is considerable increase in wound contraction when compared to CS treated group. In addition we adapted the antioxidant assay using 2,2'-azobisisobutryonitrile (AIBN) to assess in vitro antioxidant activity of QIC. The antioxidant studies indicate QIC quench the radicals more efficiently. These results suggested that quercetin incorporated collagen matrix could be a novel dressing material for dermal wound healing.

    View details for DOI 10.1016/S0142-9612(03)00059-0

    View details for Web of Science ID 000182913700011

    View details for PubMedID 12711523

  • Red cell perturbations by amyloid beta-protein BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS Jayakumar, R., Kusiak, J. W., Chrest, F. J., Demehin, A. A., Murali, J., Wersto, R. P., Nagababu, E., Ravi, L., Rifkind, J. M. 2003; 1622 (1): 20-28

    Abstract

    Amyloid beta-protein (A beta) accumulation in brain is thought to be important in causing the neuropathology of Alzheimer's disease (AD). A beta interactions with both neurons and microglial cells play key roles in AD. Since vascular deposition of A beta is also implicated in AD, the interaction of red cells with these toxic aggregates gains importance. However, the effects of A beta interactions with red blood cells are less well understood. Synthetic amyloid beta-protein (1-40) was labeled with biotin and preincubated at 37 degrees C for 4, 14 and 72 h to produce fibrils. Flow cytometry was used to study the binding of these fibrils to red cells. The amyloid fibrils had a high affinity for the red cell with increased binding for the larger fibrils produced by longer preincubation. Bovine serum albumin (BSA) did not reverse the binding, but actually resulted in a more efficient binding of the A beta fibrils to the red cells. The interaction of A beta with red cells increased the mean cell volume and caused the cells to become more spherical. This effect was greater for the longer fibrils. At the same time the interaction of A beta with red cells produced an increase in their fluorescence measured after 16-h incubation at 37 degrees C. This increase in fluorescence is attributed to the formation of fluorescent heme degradation products. The effect of prior hemoglobin oxidation, catalase inhibition and glutathione peroxidase inhibition indicated that the amyloid-induced oxidative damage to the red cell involved hydrogen peroxide-induced heme degradation. These results suggest that amyloid interactions with the red cell may contribute to the pathology of AD.

    View details for DOI 10.1016/S0304-4165(03)00101-6

    View details for Web of Science ID 000185709300004

    View details for PubMedID 12829257

  • Self-assembly of the synthetic polymer (Leu-Glu)(n): An amyloid-like structure formation LANGMUIR Moses, J. P., Satheeshkumar, K. S., Murali, J., Alli, D., Jayakumar, R. 2003; 19 (8): 3413-3418

    View details for DOI 10.1021/la026661m

    View details for Web of Science ID 000182389100049

  • Influence of laboratory ware related changes in conformational and mechanical properties of collagen JOURNAL OF APPLIED POLYMER SCIENCE Sripriya, R., Ahmed, M. R., Sehgal, P. K., Jayakumar, R. 2003; 87 (13): 2186-2192

    View details for DOI 10.1002/app.11651

    View details for Web of Science ID 000180466900020

  • Electrocatalytic oxidative cleavage by electrogenerated periodate JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL Khan, F. N., Jayakumar, R., Pillai, C. N. 2003; 195 (1-2): 139-145
  • Circular dichroism and Fourier transform infrared spectroscopic studies on self-assembly of tetrapeptide derivative in solution and solvated film JOURNAL OF PEPTIDE RESEARCH Ganesh, S., Jayakumar, R. 2003; 61 (3): 122-128

    Abstract

    Aggregation of the hydrophobic peptide derivative Boc-Ala-Ile-Ile-Gly-OMe (1) was examined in methanol solution and in solvated film states. Formation of the peptide by self-assembly was evidenced using fluorescence [Mg salt of 8-anilino-naphthalenesulfonic acid (ANS) as an external probe] and circular dichroism (CD) spectroscopic techniques. In solution, peptide 1 formed as a stable aggregate at a concentration around 3 x 10(-4)m. The peptide gelled into a thin film for which we carried out CD and Fourier transform infrared (FTIR) measurements. Our spectroscopic study on peptide films at differing methanol concentrations indicates that the helical content of the peptide decreases with decreasing methanol concentration in solvated films. However, by reducing the methanol concentration we were able to observe a conformational transition from a predominantly helical turn to a beta-sheet structure via a random coil conformation. Our study focused on the aggregation of the alpha-helical turn-forming peptide derivative, which shows conformational transition on changing solvent concentration in the film form.

    View details for Web of Science ID 000181058200003

    View details for PubMedID 12558947

  • Amyloid insulin interaction with erythrocytes BIOCHEMISTRY AND CELL BIOLOGY-BIOCHIMIE ET BIOLOGIE CELLULAIRE Murali, J., Koteeswari, D., Rifkind, J. M., Jayakumar, R. 2003; 81 (1): 51-59

    Abstract

    Erythrocyte membrane interactions with insulin fibrils (amyloid) have been investigated using centrifugation, fluorescence spectroscopy, light scattering, and flow cytometric techniques. The results indicate that insulin fibrils are having moderate affinity to erythrocyte membrane. However, analysis of the apparent dissociation constants of human erythrocyte membranes (leaky and resealed vesicles) with amyloid insulin reveal that the insulin binding is drastically reduced on attaining the fibrillar state compared with native insulin. To understand the role of insulin receptors on erythrocytes binding to amyloid, we have studied the interaction of biotinylated forms of denatured and amyloidic insulin with erythrocytes. FITC-streptavidin was used as a counter staining in flow cytometry measurements. We found that insulin fibrils bind 10 times more with erythrocyte membranes than with amylin and denatured insulin.

    View details for DOI 10.1139/O03-009

    View details for Web of Science ID 000181210800007

    View details for PubMedID 12683636

  • Effect of Ca2+ on the self assembly of a nonionic peptide aggregate LETTERS IN PEPTIDE SCIENCE Moses, J. P., Inayathullah, N. M., Murugesan, M., Andrews, M. E., Balasubramanian, M. P., Jayakumar, R. 2003; 10 (1): 25-32
  • Self-assembly of chromotropic acid - a plausible explanation for monodisperse oligomer formation COLLOID AND POLYMER SCIENCE Murugesan, M., Rajakumar, V. R., Scbibioh, M. J., Jayakumar, R. 2002; 280 (12): 1147-1150
  • Electrochemical reductive allylation of N-benzylideneethanolamine TETRAHEDRON LETTERS Khan, F. N., Jayakumar, R., Pillai, C. N. 2002; 43 (38): 6807-6809
  • Binding of hemoglobin to red cell membranes with eosin-5-maleimide-labeled band 3: Analysis of centrifugation and fluorescence lifetime data BIOCHEMISTRY Demehin, A. A., Abugo, O. O., Jayakumar, R., Lakowicz, J. R., Rifkind, J. M. 2002; 41 (27): 8630-8637

    Abstract

    We have studied the binding of hemoglobin to the red cell membrane by centrifugation and fluorescence methods. The intact red cell was labeled with eosin-5-maleimide (EM), which specifically reacts with lysine 430 of band 3. Even though this residue is not part of the cytoplasmic domain of band 3 (cdb3) associated with hemoglobin binding, fluorescence quenching was observed when hemoglobin bound to inside-out vesicles (IOVs). The use of fluorescence quenching to measure band 3 binding was quantitatively compared with the binding determined by centrifugation, which measures binding to band 3 and non-band 3 sites. For the centrifugation it was necessary to include the non-band 3 association constants determined from chymotrypsin-treated IOVs. The binding of hemoglobin to band 3 was interpreted in terms of the binding of two hemoglobin tetramers to each band 3 dimer. An anticooperative interaction associated with the conformational change produced when hemoglobin binds results in a 2.8-fold decrease in the intrinsic constant of (1.54 +/- 0.25) x 10(7) M(-1) for the binding of the second hemoglobin molecule. From the changes in lifetime produced by binding the first and second hemoglobin molecules, it was possible to show that the conformational change associated with binding the second hemoglobin molecule results in a decrease of the heme-eosin distance from 47.90 to 44.78 A. Reaction of cyanate with the alpha-amino group of hemoglobin (HbOCN) is shown to produce a very dramatic decrease in the binding of hemoglobin to both the band 3 and non-band 3 sites. The intrinsic constant for binding the first hemoglobin molecule to band 3 decreases by a factor of 29 to (5.34 +/- 0.15) x 10(5) M(-1). The anticooperative interaction is greater with the intrinsic constant decreasing by a factor of 3.8 for the binding of the second hemoglobin tetramer to band 3. In addition, the nature of the conformational change produced by binding hemoglobin is very different with the second HbOCN increasing the heme-eosin distance to 55.99 A. The utilization of eosin-5-maleimide-reacted red cell membrane to study hemoglobin binding makes it possible to directly study the binding to band 3. At the same time a sensitive probe of the conformational changes, which occur when hemoglobin binds to band 3, is provided.

    View details for DOI 10.1021/bi02007e

    View details for Web of Science ID 000176674100012

    View details for PubMedID 12093280

  • Study on the stabilisation of collagen with vegetable tannins in the presence of acrylic polymer BIOMATERIALS Madhan, B., Muralidharan, C., Jayakumar, R. 2002; 23 (14): 2841-2847

    Abstract

    Collagen, a unique connective tissue protein finds extensive application as biocompatible biomaterial in wound healing, as drug carriers, cosmetics, etc. A study has been undertaken to stabilise Type-I collagen of rat-tail tendon using plant polyphenol (Acacia Mollissima) in the presence of an acrylic polymer. It has been found that collagen fibres pre-treated with acrylic polymer followed by the treatment with Acacia Mollissima exhibited an increase in hydrothermal stability by 25 degrees C. Infrared spectroscopic studies display the changes in the spectral characteristics of native and treated collagen films. Transmission electron microscopic and circular dichroic studies provide an insight into the understanding of the improved stabilisation of collagen, due to treatment with acrylic polymer and plant polyphenols. The study is expected to enhance the biomaterial applications of collagen tissues.

    View details for Web of Science ID 000176015400003

    View details for PubMedID 12069323

  • Role of N-t-Boc group in helix initiation in a novel tetrapeptide JOURNAL OF PEPTIDE RESEARCH Ganesh, S., Jayakumar, R. 2002; 59 (6): 249-256

    Abstract

    Protecting groups in N- and C-terminal positions play a decisive role in the conformational preference of smaller peptides. Conformational analysis of tetrapeptide derivatives containing Ala, Ile and Gly residues was performed. Peptide 1, Boc-Ala-Ile-Ile-Gly-OMe (Boc: tert-butyloxycarbonyl) has a predominantly helical turn conformation in all the alcoholic solvents studied, whereas in the solid state it has a beta-sheet conformation. In contrast, peptide 2, Ac-Ala-Ile-Ile-Gly-OMe (Ac: acetyl) has a random coil conformation in solution. The FTIR spectrum of peptide 1 shows a lower frequency of urethane carbonyl, indicating involvement of the carbonyl group in hydrogen bonding in the helical turn.

    View details for Web of Science ID 000175775600002

    View details for PubMedID 12010515

  • Adiabatic compressibility and intrinsic viscosity studies on peptide aggregates LETTERS IN PEPTIDE SCIENCE Andrews, M. E., Moses, J. P., Sendhil, S., Rakkappan, C., Jayakumar, R. 2002; 9 (4-5): 167-172
  • Sonication induced sheet formation at the air-water interface CHEMICAL COMMUNICATIONS Satheeshkumar, K. S., Jayakumar, R. 2002: 2244-2245

    Abstract

    A hydrophobic pentadecapeptide, AGAAAA-GAVVGGLGG (1), part of the prion sequence PrP (106-127), on fresh aqueous dissolution takes a mixture of random and sheet conformations which forms a stable monolayer with a high beta-sheet content when compressed at the air-water interface. This also develops into a kinetically stabilized beta-sheet structure on sonication.

    View details for DOI 10.1039/b206886a

    View details for Web of Science ID 000178192300027

    View details for PubMedID 12397998

  • Aging and the Red Cell Mechanisms of Cardiovascular Aging (Book Chapter) Rifkind JM, Abugo OO, Nagababu E, Somasundaram R, Demehin A, Jayakumar R, Hagen T 2002: 281-305
  • A novel tyrosine derivative to study non-covalent assembly involving C-H center dot center dot center dot O hydrogen bonding BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN Satheeshkumar, K. S., Malar, E. J., Jayakumar, R. 2002; 75 (1): 89-90
  • Immunological significance of metal induced conformational changes in the mitogenic Achatinin(H) binding to carbohydrate ligands COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY Indra, D., Ganesh, S., Ramalingam, K., Asokan, C., Jayakumar, R. 2000; 127 (2): 177-183

    Abstract

    9-O-Acetyl neuraminic acid specific lectin (AchatininH) was isolated from the hemolymph of the land snail Achatina fulica by affinity chromatography on sheep submaxillary mucin (SSM) coupled cyanogen bromide activated Sepharose 4B. The molecular weight of the native protein was 2.42 kDa. UV-Vis absorption, fluorescence and circular dichroism spectroscopic studies on AchatininH revealed the importance of divalent metal ions (Ca2 +, Mg2+ and Mn2+) on lectin conformational change associated with activity of lectins. The binding of these cations changes lambdamax to shorter wavelength in the far UV region (blue shift) and longer wavelength in UV region (red shift), indicating substantial contribution of aromatic side chain in the far UV region on binding with metal ions. The results infer that divalent cations cause conformational changes in lectin which may be responsible for affinity with their carbohydrate moiety.

    View details for Web of Science ID 000089334800007

    View details for PubMedID 11083028

  • Formation of multilamellar vesicles ('onions') in peptide based surfactant BIOORGANIC & MEDICINAL CHEMISTRY LETTERS Jayakumar, R., Murugesan, M., Ahmed, M. R. 2000; 10 (14): 1547-1550

    Abstract

    Concentration dependent morphological characteristics of a novel dipeptide derivative Lys-Asp-Lauryl.HBr (1) has been presented. Evidence for "onion" like vesicle formation at higher concentration (>8.2 x 10(-3) M) of peptide (1) in aqueous medium was obtained from conductance and 90 degrees light scattering measurements, and cryo-transmission electron microscopic studies.

    View details for Web of Science ID 000088148700013

    View details for PubMedID 10915047

  • Anomalous temperature dependence of peptide films at air-water interface BIOORGANIC & MEDICINAL CHEMISTRY LETTERS Jayakumar, R., Murugesan, M. 2000; 10 (10): 1055-1057

    Abstract

    The tetrapeptide derivative Tyr-Gly-Phe-Ala-OBz (1) forms monolayers as confirmed by compressibility studies carried out at various temperatures. Peptide 1 monolayer exhibits an anomalous structural transition at 40 degrees C as evidenced by pi-A isotherms recorded at different temperatures. The structural transition is also observed in aqueous solution of trifluoroacetate of peptide 1 as evidenced by fluorescence and Raman scattering intensity measurements.

    View details for Web of Science ID 000087219200014

    View details for PubMedID 10843215

  • Aggregational studies on beta-turn forming peptide Tyr-Pro-Gly-Asp-Val LANGMUIR Jayakumar, R., Murugesan, M., Selvi, S., Scibioh, M. A. 2000; 16 (7): 3019-3021
  • Hemodynamic changes during aging associated with cerebral blood flow and impaired cognitive function NEUROBIOLOGY OF AGING Ajmani, R. S., Metter, E. J., Jaykumar, R., Ingram, D. K., Spangler, E. L., Abugo, O. O., Rifkind, J. M. 2000; 21 (2): 257-269

    Abstract

    This study investigates the age associated changes in hemorheological properties and cerebral blood flow. Partial correlations indicate that part of the age-dependent decrease in flow velocities can be attributed to a hemorheological decrement resulting in part from enhanced oxidative stress in the aged. A possible link with Alzheimer's pathology is suggested by the augmented hemorheological impairment resulting from in vitro incubation of red cells with amyloids. These results suggest that in aging, oxidative stress as well as amyloids may influence the fluid properties of blood, resulting in a potential decrement in blood flow and oxygen delivery to the brain. Animal intervention studies further demonstrate that altered hemorheological properties of blood can actually influence cognitive function. The relationships shown to exist between hemorheology, blood flow, amyloids, oxidative stress, and cognitive function suggest that these factors may be one of the mechanisms operating in the complex etiology of Alzheimer's disease.

    View details for Web of Science ID 000087830000012

    View details for PubMedID 10867210

  • Self-assembly of a peptide Boc-(IIe)(5)-OMe in chloroform and N,N-dimethylformamide LANGMUIR Jayakumar, R., Murugesan, M., Asokan, C., Scibioh, M. A. 2000; 16 (4): 1489-1496
  • Structural transition of nonionic peptide aggregates in aqueous medium LANGMUIR Murugesan, M., Scibioh, M. A., Jayakumar, R. 1999; 15 (17): 5467-5473
  • Role of nitric oxide on GABA, glutamic acid, activities of GABA-T and GAD in rat brain cerebral cortex BRAIN RESEARCH Jayakumar, A. R., Sujatha, R., Paul, V., Asokan, C., Govindasamy, S., Jayakumar, R. 1999; 837 (1-2): 229-235

    Abstract

    The results of the present study clearly shows that a correlation exists between nitric oxide (NO) and gamma-aminobutyric acid transaminase (GABAT-T) activity as well as gamma-aminobutyric acid (GABA), glutamic acid and the activity of glutamic acid decarboxylase (GAD). Supporting of this 10 min after the administration of L-Arginine (L-Arg) increased GABA concentration and diminished the activity of GABA-T. There was no change in GAD activity and glutamic acid level. Administration of convulsion inducing agent Picrotoxin (PCT) decreased the NO concentration in the brain and enhanced the activity of GABA-T, and the fact that the NOS inhibitor (N(G)-nitro-L-Arg methyl ester (L-NAME) diminished the activity of NOS and increased the activity of GABA-T provide another support for the involvement of NO on GABA-T activity. The present study clearly showed that high concentrations of NO in the brain suppresses the activity of GABA-T.

    View details for Web of Science ID 000082009500027

    View details for PubMedID 10434007

  • Behavioural and biochemical changes after simultaneous and post-treatment of vitamin A and D on cadmium toxicity ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY Sujatha, R., Jayakumar, A. R., Krishnamoorthy, M. S., Paul, V., Jayakumar, R. 1999; 7 (3): 189-197

    Abstract

    In the present study, an investigation was undertaken to assess the protective efficacy in cadmium toxicity of vitamins administered simultaneously as well as post-treatment. Rats were treated with cadmium 1 mg/kg body weight (bw) powdered vitamin A chewable tablet 500 IU/kg bw/day and injectable vitamin D(3) (made into a suspension with gum tragacanth in 100 ml distilled water) 100 IU/kg bw/day, mixed with powdered pellet feed and fed to experimental animals. Spontaneous motor activity and Rota Rod Endurance time was recorded after both simultaneous (for 21 days) and post-treatment (42 days). Vitamin treated animals by themselves behaved like controls but attenuated the cadmium effect when given Cd simultaneously or as post-treatment. While the biochemical changes were assayed, vitamins which did not have any influence on their own, given simultaneously and as post-treatment, antagonized the cadmium effect on heart, liver tissues and serum. Both simultaneous and post-cadmium and -vitamin treatments significantly increased the activities of the enzymes aspartic amino transferase, alanine aminotransferase, acid phosphatase and alkaline phosphatase in tissues and serum. Simultaneous and post-vitamin treatment with Cd had an effect of bringing back the activity of the enzymes closer to control values. These data suggest that treatment with vitamin A and D can minimise the Cd effect when given to the population exposed to Cd.

    View details for Web of Science ID 000082489200005

    View details for PubMedID 21781925

  • Involvement of nitric oxide and nitric oxide synthase activity in anticonvulsive action BRAIN RESEARCH BULLETIN Jayakumar, A. R., Sujatha, R., Paul, V., Puviarasan, K., Jayakumar, R. 1999; 48 (4): 387-394

    Abstract

    The anticonvulsant drug Diazepam (DIA-2 mg/kg b. wt), the nitric oxide (NO) donor L-Arginine (L-Arg-2000 mg/kg b. wt) and the putative nitric oxide synthase (NOS) inhibitor N(G)-Nitro-L-Arginine methyl ester (L-NAME-50 mg/kg b. wt) were used to determine the role of endogenous NO on convulsions induced by picrotoxin (PCT-5 mg/kg b. wt) in rats. Rats given a convulsant dose of PCT (5 mg/kg b. wt) had convulsion and it suppresses the NOS activity and NO concentration in brain regions. The anticonvulsant L-Arg alone significantly increases the NO concentration and NOS activity in brain regions, but not diazepam. Whereas DIA, along with L-Arg, enhances the NO and NOS activity when compared to L-Arg alone. The combination of both OIA and L-Arg completely suppressed the convulsions. L-NAME alone had no effect to produce convulsions but it completely decreased NO concentration and NOS activity and potentiated the PCT convulsions. This was reverted by pre- and post treatment of DIA plus L-Arg indicating, the increased NO concentration and NOS activity in brain regions suppresses convulsions.

    View details for Web of Science ID 000080317900005

    View details for PubMedID 10357070

  • Impact of monocrotophos on protein and carbohydrate metabolism in different tissues of albino rats CYTOBIOS Elumalai, M., Jayakumar, R., Balasubramanian, M. P. 1999; 98 (389): 131-136

    Abstract

    The impact of monocrotophos on protein and carbohydrate metabolism in different tissues of albino rats was investigated. The monocrotophos (0.25 mg/ml) was orally intubated into an experimental group of rats. In another group, the same amount of water was orally intubated (control group) for 29 days. The protein content was increased in liver, serum and spleen of albino rats after treatment with monocrotophos. The protein content decreased in muscle and kidney, and overall the free sugar level decreased in all tissues. The glycogen content increased in muscle, serum and kidney after treatment with monocrotophos, and the glycogen content and reducing sugar level decreased in liver and spleen. The significance of these results is discussed.

    View details for Web of Science ID 000082814400001

    View details for PubMedID 10533267

  • 3(10) helix formation in protected tripeptide PROTEIN AND PEPTIDE LETTERS Jayakumar, R., Scibioh, M. A., Pattabhi, V., Manoharan, P. T. 1998; 5 (6): 321-331
  • Effect of a novel tetrapeptide derivative in a model of isoproterenol induced myocardial necrosis MOLECULAR AND CELLULAR BIOCHEMISTRY Ramesh, C. V., Malarvannan, P., Jayakumar, R., Jayasundar, S., Puvanakrishnan, R. 1998; 187 (1-2): 173-182

    Abstract

    Isoproterenol hydrochloride (ISO), a beta adrenergic agonist, is known to cause ischemic necrosis in rats. Cardiotoxicity of three different doses of ISO were studied using physiological, biochemical and histopathological parameters. The effects of single and double dose of ISO were analysed, which illustrated that single ISO dose was more cardiotoxic than double ISO dose due to ischemic preconditioning. The tetrapeptide derivatives L-lysine-L-arginine-L-aspartic acid-L-serine (tetrapeptide A) and di-tert.butyloxycarbonyl-L-lysine-L-arginine-L-aspartic acid-tert.butyl O-tert.butyl-L-serinate (tetrapeptide B) along with acetylsalicylic acid as positive control were analysed at different time points for their cardioprotective effect. The results demonstrated that optimal protective effects were observed by pretreatment with 5 mg/kg of tetrapeptide B and this was found to be slightly better than that of acetylsalicylic acid. A lesser degree of cardioprotection was noticed when low doses of tetrapeptide B were administered. This study clearly showed that single dose of ISO (50 mg/kg, s.c.) induced myocardial necrosis could be used as a model to assess cardiovascular drugs and in this model, it was demonstrated that the tetrapeptide B could exhibit optimal cardioprotective effect.

    View details for Web of Science ID 000076281500019

    View details for PubMedID 9788755

  • Self assembling peptides exhibiting antithrombotic activity PROTEIN AND PEPTIDE LETTERS Ramesh, C. V., Jayakumar, R., Puvanakrishnan, R. 1998; 5 (3): 147-154
  • A novel surface-active peptide derivative exhibits in vitro inhibition of platelet aggregation PEPTIDES Ramesh, C. V., Jayakumar, R., Puvanakrishnan, R. 1998; 19 (10): 1695-1702

    Abstract

    A tetrapeptide corresponding to a region of the N-terminal portion of lactotransferrin with hydrophobic alkyl groups at the terminal ends was synthesized and its physicochemical properties as well as its effect on thrombin-stimulated platelet aggregation were examined. The tetrapeptide derivative, in the aggregated state, produced inhibitory effect on platelet aggregation. The concentration dependent activity of the peptide was analyzed in the light of micelle formation, with the micellar aggregate comprising four tetrapeptide units. The unique action of this peptide derivative on the inhibition of platelet aggregation might be useful in the development of potent antithrombotic drugs.

    View details for Web of Science ID 000077691900008

    View details for PubMedID 9880074

  • Physicochemical characterization of a novel surfactant peptide containing an arginine cation and laurate anion COLLOID AND POLYMER SCIENCE Ramesh, C. V., Jayakumar, R., Puvanakrishnan, R. 1997; 275 (12): 1162-1168
  • Aggregation of a tetrapeptide derivative [Boc-Ile-Gly-Met-Thr(Bzl)-OBzl] in chloroform JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2 Murugesan, M., Venugopal, M., Jayakumar, R. 1997: 1959-1963
  • Synthesis and aggregational behavior of acidic proteinoid JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY Kumar, A. B., Jayakumar, R., Rao, K. P. 1996; 34 (14): 2915-2924
  • Physicochemical studies on reverse micelles of sodium bis(2-ethylhexyl) sulfosuccinate at low water content LANGMUIR Manoj, K. M., Jayakumar, R., Rakshit, S. K. 1996; 12 (17): 4068-4072
  • Surface active peptide-mediated porphyrin aggregation BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS Venkatesh, B., Jayakumar, R., Pandian, R. P., Manoharan, P. T. 1996; 223 (2): 390-396

    Abstract

    Surface active pentapeptide [2(HCOO-). Lys-Ala-Ala-Lys(Z)-Tyr-OCH3] has been synthesized and its micelle formation investigated using conductometric, pH metric, and UV spectroscopic techniques. The double head double tail peptide molecules are shown to interact with water soluble meso-tetrakis (4-sulfonatophenyl)-porphyrin [TPPS]H2 to form characteristic H-type aggregate at low concentrations, as evidenced by UV-Vis and fluorescence spectroscopic techniques. Spectroscopic analysis reveals that the aggregate contains 1:2 porphyrin-peptide combination. The equilibrium constant for the formation of peptide-porphyrin complex has been obtained by using absorption spectral data. The present studies provide new insight into the peptide-porphyrin interaction.

    View details for Web of Science ID A1996UR69600033

    View details for PubMedID 8670292

  • Self-assembly of a nonionic peptide surfactant in aqueous medium LANGMUIR Murugesan, M., Jayakumar, R., Durai, V. 1996; 12 (7): 1760-1764
  • IN-VITRO STUDIES ON A NOVEL MICELLE-FORMING PEPTIDE WITH ANTICOAGULANT ACTIVITY INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH Ramesh, C. V., Jayakumar, R., Puvanakrishnan, R. 1995; 45 (4): 386-390

    Abstract

    A novel peptide, tert-butyloxycarbonyl-L-arginine-L-proline lauryl ester laurate, synthesised by a solution-phase method, formed micelles in aqueous solutions and was observed to exhibit anticoagulant activity as shown by clotting assays such as the thrombin time (TT) test, the prothrombin time (PT) test and the activated partial thromboplastin time (APTT) test. TT and PT were found to be normal up to a particular concentration of peptide, and above that level they increased with increasing concentration of peptide, while APTT did not exhibit much significance. Conductometric and potentiometric studies showed that the peptide formed a stable micelle, and the anticoagulant activity of this peptide was also compared with a non-arginine-containing peptide (control) known to form micelles. The anticoagulant action in the micellar form could be due to the inhibition of thrombin, as seen from the decrease in amidolytic activity. The inhibitory activity of the peptide was explained in the light of micelle formation.

    View details for Web of Science ID A1995QQ76900012

    View details for PubMedID 7601613

  • PEPTIDE AGGREGATES - A NOVEL MODEL SYSTEM TO STUDY SELF-ASSEMBLY OF PEPTIDES INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH Jayakumar, R., JAYANTHY, C., GOMATHY, L. 1995; 45 (2): 129-137

    Abstract

    Ordered aggregates of Val-Leu-Pro-Phe, tetrapeptide 1, have been found in aqueous solutions. Evidence for the formation of aggregates for the above peptide was obtained by conductometric, pH metric, UV and fluorescence spectroscopic techniques. Values of critical micelle concentration (CMC) for the above peptide obtained by these methods are in good agreement with each other. The formation of organized aggregates of the peptide is favoured upon increasing the temperature (viz. the process of aggregation is endothermic). The aggregation number has been determined at different temperatures. Values of delta G0m, delta H0m, delta S0m and delta C0p have also been estimated. Binding studies with the 8-anilinonaphthyl sulfonic acid (ANS) and pyrene indicate that the interior of the aggregate is nonpolar. There are two processes with regard to the change of thermodynamical parameters like delta G0m, delta H0m, delta S0m, delta C0p and aggregation number (N). In the first process (from 5 degrees C to 40 degrees C) the driving force for aggregation seems to be the positive entropy because of water release due to intermolecular association of ionic moieties. The second process (from 40 degrees C and above) is due to intramolecular ionic interaction. The chemical shifts of the amide protons of the peptide have been presented in the light of inter- and intramolecular hydrogen-bond formation, and forces implicated in aggregation for both the first and second processes.

    View details for Web of Science ID A1995QJ77400006

    View details for PubMedID 7782160

  • AGGREGATION, HYDROGEN-BONDING AND THERMODYNAMIC STUDIES ON BOC-VAL-VAL-ILE-OME TRIPEPTIDE MICELLES IN CHLOROFORM JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS Jayakumar, R., Jeevan, R. G., Mandal, A. B., Manoharan, P. T. 1994; 90 (18): 2725-2730
  • CRYSTAL-STRUCTURE AND CONFORMATION OF N-(T-BUTOXYCARBONYL)-L-ALANYL-S-BENZYL-L-CYSTEINE METHYL-ESTER BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN Sukumar, N., Ponnuswamy, M. N., Jayakumar, R. 1994; 67 (7): 1976-1979
  • AGGREGATION, HYDROGEN-BONDING AND THERMODYNAMIC STUDIES ON TETRAPEPTIDE MICELLES JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS Mandal, A. B., Jayakumar, R. 1994; 90 (1): 161-165
  • ANGIOTENSIN-I CONVERTING-ENZYME ACTIVITY IN ADRIAMYCIN-INDUCED NEPHROSIS IN RATS TOXICOLOGY Venkatesan, N., Ramesh, C. V., Jayakumar, R., Chandrakasan, G. 1993; 85 (2-3): 137-148

    Abstract

    Activity of the dipeptidyl hydrolase angiotensin converting enzyme (ACE) has been observed to be altered by treatment with adriamycin (ADR). We used an animal model of ADR nephrotoxicity to study the effects on ACE in serum, urine and tissues on days 5, 10, 15, 20, 25 and 30 after ADR administration. Both glomerular and tubular injury occurred as evidenced by heavy proteinuria, albuminuria and increased urine N-acetyl glucosaminidase (NAG) excretion. Serum ACE was significantly elevated on days 20, 25 and 30. Of great interest was the excretion of ACE in urine of treated rats which ran parallel with the total protein excretion above the barely detectable levels found in controls. ACE activity increased in kidney, adrenal gland and liver on days 15, 20, 25 and 30. Heart and brain ACE levels increased on days 25 and 30. Increased ACE activity in aorta and lungs occurred on days 20, 25 and 30. ACE activity decreased in kidney, aorta, heart and brain on days 5 and 10. These observations strongly suggest a contribution of various tissues to elevate the serum ACE level. Urinary ACE may be of potential use as an index for renal glomerular and tubular damage.

    View details for Web of Science ID A1993MU47600005

    View details for PubMedID 8303709

  • CRYSTAL-STRUCTURE AND CONFORMATION OF N-(T-BUTOXYCARBONYL)-L-ISOLEUCYL-L-ALANINE BENZYLESTER JOURNAL OF CRYSTALLOGRAPHIC AND SPECTROSCOPIC RESEARCH Sukumar, N., Ponnuswamy, M. N., Jayakumar, R. 1993; 23 (10): 769-772
  • CHARACTERIZATION OF BOC-LYS(Z)-TYR-NHNH2 DIPEPTIDE .1. PHYSICOCHEMICAL STUDIES ON THE MICELLE FORMATION OF A DIPEPTIDE IN THE ABSENCE AND PRESENCE OF IONIC SURFACTANTS JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS Mandal, A. B., Dhathathreyan, A., Jayakumar, R., Ramasami, T. 1993; 89 (16): 3075-3079
  • CRYSTAL-STRUCTURE AND CONFORMATION OF N-(T-BUTOXYCARBONYL)-L-VALINE N-HYDROXYSUCCINIMIDE ESTER BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN Sukumar, N., Ponnuswamy, M. N., Jayakumar, R. 1993; 66 (7): 2101-2103
  • MICELLE FORMATION OF BOC-VAL-VAL-ILE-OME TRIPEPTIDE IN CHLOROFORM AND ITS CONFORMATIONAL-ANALYSIS JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS Jayakumar, R., Mandal, A. B., Manoharan, P. T. 1993: 853-855
  • A FOURIER-TRANSFORM INFRARED SPECTROSCOPIC INVESTIGATION OF HYDROPHOBIC PEPTIDES IN LIPID ENVIRONMENT - A MONOLAYER STUDY INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY Jayakumar, R., Dhathathreyan, A., Ramasami, T. 1993; 32 (5): 373-375
  • A NEW MICELLE-FORMING PEPTIDE JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS Mandal, A. B., Jayakumar, R. 1993: 237-238
  • CONFORMATIONAL PREFERENCE OF N-ACYL UREA CONTAINING VALINE RESIDUE IN DMSO D(6) BIOORGANIC & MEDICINAL CHEMISTRY LETTERS Jayakumar, R., Pattabhi, V. 1993; 3 (2): 153-156
  • C9 CONFORMATION OF N-(N-ALPHA-[(TERT-BUTYLOXY)-CARBONYL]-L-ALANYL)-N,N'-DICYCLOHEXYLUREA IN SOLID AND SOLUTION INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH Sudarsanakumar, C., Srinivasan, S., Jayakumar, R. 1992; 39 (4): 285-290

    Abstract

    An X-ray diffraction study was carried out on a single crystal of N-(N alpha-[(tert.-butyloxy)-carbonyl]-L-alanyl)-N,N'-dicyclohexylur ea belonging to the tetragonal space group P4(1)2(1)2, having cell dimensions a = b = 10.102(3) A, c = 46.067(7) A, V = 4701.2 A3, Z = 8. The crystal structure was solved by direct methods and refined to an R value of 0.056 for 1602 unique reflections with I greater than 2.5 sigma(I). Crystal structure analysis shows the presence of an intramolecular N-H ... O=C H-bond stabilizing the molecule in a folded form similar to that of a beta turn, forming a nine-membered ring. IR and 1H-NMR studies in CDCl3 solution confirm the stable folded conformation found in the crystalline state, as well as the existence of N-H ... O=C H-bonds in the title compound, as in peptides.

    View details for Web of Science ID A1992HW20600001

    View details for PubMedID 1341904

Stanford Medicine Resources: