Bio

Education & Certifications


  • Bachelor of Science, Carnegie Mellon University, UG Biological Sciences (2004)

Publications

Journal Articles


  • Depleting tumor-specific Tregs at a single site eradicates disseminated tumors JOURNAL OF CLINICAL INVESTIGATION Marabelle, A., Kohrt, H., Sagiv-Barfi, I., Ajami, B., Axtell, R. C., Zhou, G., Rajapaksa, R., Green, M. R., Torchia, J., Brody, J., Luong, R., Rosenblum, M. D., Steinman, L., Levitsky, H. I., Tse, V., Levy, R. 2013; 123 (6): 2447-2463

    Abstract

    Activation of TLR9 by direct injection of unmethylated CpG nucleotides into a tumor can induce a therapeutic immune response; however, Tregs eventually inhibit the antitumor immune response and thereby limit the power of cancer immunotherapies. In tumor-bearing mice, we found that Tregs within the tumor preferentially express the cell surface markers CTLA-4 and OX40. We show that intratumoral coinjection of anti-CTLA-4 and anti-OX40 together with CpG depleted tumor-infiltrating Tregs. This in situ immunomodulation, which was performed with low doses of antibodies in a single tumor, generated a systemic antitumor immune response that eradicated disseminated disease in mice. Further, this treatment modality was effective against established CNS lymphoma with leptomeningeal metastases, sites that are usually considered to be tumor cell sanctuaries in the context of conventional systemic therapy. These results demonstrate that antitumor immune effectors elicited by local immunomodulation can eradicate tumor cells at distant sites. We propose that, rather than using mAbs to target cancer cells systemically, mAbs could be used to target the tumor infiltrative immune cells locally, thereby eliciting a systemic immune response.

    View details for DOI 10.1172/JCI64859

    View details for Web of Science ID 000320093100018

    View details for PubMedID 23728179

  • In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study JOURNAL OF CLINICAL ONCOLOGY Brody, J. D., Ai, W. Z., Czerwinski, D. K., Torchia, J. A., Levy, M., Advani, R. H., Kim, Y. H., Hoppe, R. T., Knox, S. J., Shin, L. K., Wapnir, I., Tibshirani, R. J., Levy, R. 2010; 28 (28): 4324-4332

    Abstract

    Combining tumor antigens with an immunostimulant can induce the immune system to specifically eliminate cancer cells. Generally, this combination is accomplished in an ex vivo, customized manner. In a preclinical lymphoma model, intratumoral injection of a Toll-like receptor 9 (TLR9) agonist induced systemic antitumor immunity and cured large, disseminated tumors.We treated 15 patients with low-grade B-cell lymphoma using low-dose radiotherapy to a single tumor site and-at that same site-injected the C-G enriched, synthetic oligodeoxynucleotide (also referred to as CpG) TLR9 agonist PF-3512676. Clinical responses were assessed at distant, untreated tumor sites. Immune responses were evaluated by measuring T-cell activation after in vitro restimulation with autologous tumor cells.This in situ vaccination maneuver was well-tolerated with only grade 1 to 2 local or systemic reactions and no treatment-limiting adverse events. One patient had a complete clinical response, three others had partial responses, and two patients had stable but continually regressing disease for periods significantly longer than that achieved with prior therapies. Vaccination induced tumor-reactive memory CD8 T cells. Some patients' tumors were able to induce a suppressive, regulatory phenotype in autologous T cells in vitro; these patients tended to have a shorter time to disease progression. One clinically responding patient received a second course of vaccination after relapse resulting in a second, more rapid clinical response.In situ tumor vaccination with a TLR9 agonist induces systemic antilymphoma clinical responses. This maneuver is clinically feasible and does not require the production of a customized vaccine product.

    View details for DOI 10.1200/JCO.2010.28.9793

    View details for Web of Science ID 000282272700032

    View details for PubMedID 20697067

  • TREM2-and DAP12-Dependent Activation of PI3K Requires DAP10 and Is Inhibited by SHIP1 SCIENCE SIGNALING Peng, Q., Malhotra, S., Torchia, J. A., Kerr, W. G., Coggeshall, K. M., Humphrey, M. B. 2010; 3 (122)

    Abstract

    The activation and fusion of macrophages and of osteoclasts require the adaptor molecule DNAX-activating protein of 12 kD (DAP12), which contains immunoreceptor tyrosine-based activation motifs (ITAMs). TREM2 (triggering receptor expressed on myeloid cells-2) is the main DAP12-associated receptor in osteoclasts and, similar to DAP12 deficiency, loss of TREM2 in humans leads to Nasu-Hakola disease, which is characterized by bone cysts and dementia. Furthermore, in vitro experiments have shown that deficiency in DAP12 or TREM2 leads to impaired osteoclast development and the formation of mononuclear osteoclasts. Here, we demonstrate that the ligation of TREM2 activated phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase 1 (ERK1) and ERK2, and the guanine nucleotide exchange factor Vav3; induced the mobilization of intracellular calcium (Ca(2+)) and the reorganization of actin; and prevented apoptosis. The signaling adaptor molecule DAP10 played a key role in the TREM2- and DAP12-dependent recruitment of PI3K to the signaling complex. Src homology 2 (SH2) domain-containing inositol phosphatase-1 (SHIP1) inhibited TREM2- and DAP12-induced signaling by binding to DAP12 in an SH2 domain-dependent manner and preventing the recruitment of PI3K to DAP12. These results demonstrate a previously uncharacterized interaction of SHIP1 with DAP12 that functionally limits TREM2- and DAP12-dependent signaling and identify a mechanism through which SHIP1 regulates key ITAM-containing receptors by directly blocking the binding and activation of PI3K.

    View details for DOI 10.1126/scisignal.2000500

    View details for Web of Science ID 000277822900001

    View details for PubMedID 20484116

  • Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by T-reg depletion BLOOD Houot, R., Goldstein, M. J., Kohrt, H. E., Myklebust, J. H., Alizadeh, A. A., Lin, J. T., Irish, J. M., Torchia, J. A., Kolstad, A., Chen, L., Levy, R. 2009; 114 (16): 3431-3438

    Abstract

    Despite the success of passive immunotherapy with monoclonal antibodies (mAbs), many lymphoma patients eventually relapse. Induction of an adaptive immune response may elicit active and long-lasting antitumor immunity, thereby preventing or delaying recurrence. Immunomodulating mAbs directed against immune cell targets can be used to enhance the immune response to achieve efficient antitumor immunity. Anti-CD137 agonistic mAb has demonstrated antitumor efficacy in various tumor models and has now entered clinical trials for the treatment of solid tumors. Here, we investigate the therapeutic potential of anti-CD137 mAb in lymphoma. We found that human primary lymphoma tumors are infiltrated with CD137+ T cells. We therefore hypothesized that lymphoma would be susceptible to treatment with anti-CD137 agonistic mAb. Using a mouse model, we demonstrate that anti-CD137 therapy has potent antilymphoma activity in vivo. The antitumor effect of anti-CD137 therapy was mediated by both natural killer (NK) and CD8 T cells and induced long-lasting immunity. Moreover, the antitumor activity of anti-CD137 mAb could be further enhanced by depletion of regulatory T cell (T(regs)). These results support the evaluation of anti-CD137 therapy in clinical trials for patients with lymphoma.

    View details for DOI 10.1182/blood-2009-05-223958

    View details for Web of Science ID 000270834500013

    View details for PubMedID 19641184

  • Bone Microenvironment Specific Roles of ITAM Adapter Signaling during Bone Remodeling Induced by Acute Estrogen-Deficiency PLOS ONE Wu, Y., Torchia, J., Yao, W., Lane, N. E., Lanier, L. L., Nakamura, M. C., Humphrey, M. B. 2007; 2 (7)

    Abstract

    Immunoreceptor tyrosine-based activation motif (ITAM) signaling mediated by DAP12 or Fcepsilon receptor Igamma chain (FcRgamma) have been shown to be critical for osteoclast differentiation and maturation under normal physiological conditions. Their function in pathological conditions is unknown. We studied the role of ITAM signaling during rapid bone remodeling induced by acute estrogen-deficiency in wild-type (WT), DAP12-deficient (DAP12-/-), FcRgamma-deficient (FcRgamma-/-) and double-deficient (DAP12-/-FcRgamma-/-) mice. Six weeks after ovariectomy (OVX), DAP12-/-FcRgamma-/- mice showed resistance to lumbar vertebral body (LVB) trabecular bone loss, while WT, DAP12-/- and FcRgamma-/- mice had significant LVB bone loss. In contrast, all ITAM adapter-deficient mice responded to OVX with bone loss in both femur and tibia of approximately 40%, relative to basal bone volumes. Only WT mice developed significant cortical bone loss after OVX. In vitro studies showed microenvironmental changes induced by OVX are indispensable for enhanced osteoclast formation and function. Cytokine changes, including TGFbeta and TNFalpha, were able to induce osteoclastogenesis independent of RANKL in BMMs from WT but not DAP12-/- and DAP12-/-FcRgamma-/- mice. FSH stimulated RANKL-induced osteoclast differentiation from BMMs in WT, but not DAP12-/- and DAP12-/-FcRgamma-/- mice. Our study demonstrates that although ITAM adapter signaling is critical for normal bone remodeling, estrogen-deficiency induces an ITAM adapter-independent bypass mechanism allowing for enhanced osteoclastogenesis and activation in specific bony microenvironments.

    View details for DOI 10.1371/journal.pone.0000586

    View details for Web of Science ID 000207451900006

    View details for PubMedID 17611621

  • TREM2, a DAP12-associated receptor, regulates osteoclast differentiation and function JOURNAL OF BONE AND MINERAL RESEARCH Humphrey, M. B., Daws, M. R., Spusta, S. C., Niemi, E. C., Torchia, J. A., Lanier, L. L., Seaman, W. E., Nakamura, M. C. 2006; 21 (2): 237-245

    Abstract

    Deficiency of the signaling adapter protein DAP12 or its associated receptor TREM2 is associated with abnormal OC development in humans. Here we examine the role of TREM2 in mouse OC development and function, including migration and resorption in vitro. These results provide new evidence that TREM2 regulates OC function independent of its effects on multinucleated OC differentiation.TREM2 (triggering receptor expressed in myeloid cells-2) associates with the signaling adapter DAP12 in osteoclasts (OCs). Genetic mutation or deletion of either the TYROBP (DAP12) or TREM2 gene is associated with the human disorder of brain and bone, Nasu-Hakola disease. We and others recently showed the critical requirement for immunoreceptor tyrosine-based activation motif (ITAM) signals through DAP12 and the Fc Receptor gamma chain (FcRgamma) during OC development. Here, we further define the role of TREM2 in OC differentiation and describe a role for TREM2 in OC migration and bone resorption.We generated monoclonal anti-mouse TREM2 antibodies (mAb), analyzed pre-osteoclasts and mature OCs for TREM2 surface expression, and determined the effect of antibody ligation on in vitro OC differentiation, resorption, and migration. TREM2 RNA interference (RNAi) was used to disrupt expression of TREM2 in pre-osteoclasts.Using flow cytometry, our studies reveal that TREM2 is weakly expressed on C57BL/6 bone marrow macrophages (BMMs) and is upregulated during culture with RANKL and macrophage-colony stimulating factor (M-CSF). The expression of TREM2 is unaltered in DAP12-deficient OCs. Using C57BL/6 BMMs or RAW264.7 precursors, anti-TREM2 mAb treatment with RANKL and M-CSF enhances the formation of multinuclear TRACP+ OCs compared with control mAb treatment. In contrast, these agents have no effect on DAP12-deficient precursors. Monoclonal Ab blockade of TREM2 on OCs generated from C57BL/6 BMMs results in decreased resorption of artificial calcium-phosphate substrate and dentine. Reduction of TREM2 expression in RAW264.7 cells by RNAi results in loss of OC formation in response to RANKL and M-CSF. Anti-TREM2 cross-linking enhances migration of C57BL/6 OCs and RAW246.7 OCs in response to M-CSF.Our studies indicate that the TREM2 receptor regulates OC multinucleation as well as resorption and migration of mature OCs. Thus, TREM2-DAP12 signals regulate both OC formation and function.

    View details for DOI 10.1359/JBMR.051016

    View details for Web of Science ID 000234932100006

    View details for PubMedID 16418779

  • Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway LEUKEMIA RESEARCH Miranda, M. B., Xu, H., Torchia, J. A., Johnson, D. E. 2005; 29 (11): 1293-1306

    Abstract

    The intracellular signaling pathways that mediate cytokine-induced granulocytic and monocytic differentiation are incompletely understood. In this study, we examined the importance of the MEK/ERK signal transduction pathway in granulocyte-colony stimulating factor (G-CSF)-induced granulocytic differentiation of murine 32 Dc l3 cells, and in interleukin-6 (IL-6)-induced monocytic differentiation of murine M1 cells. Induction of granulocytic differentiation with G-CSF, or monocytic differentiation with IL-6, led to rapid and sustained activation of the MEK-1/-2 and ERK-1/-2 enzymes. Inhibition of the MEK/ERK pathway by pretreatment with the MEK inhibitor U 0126 dramatically attenuated G-CSF-induced granulocytic differentiation and IL-6-induced monocytic differentiation. Inhibition of MEK/ERK signaling also significantly reduced cytokine-induced DNA binding activities of STAT 3 and PU.1, transcription factors that have been implicated in myeloid differentiation. Additionally, interleukin-3, which inhibits G-CSF-induced differentiation of 32 Dc l3 cells, also inhibited the ability of G-CSF to stimulate prolonged MEK/ERK activation. Thus, the opposing actions of different hematopoietic cytokines on myeloid progenitors may be mediated at the level of MEK/ERK activation. Taken together, these studies demonstrate an important requirement for MEK/ERK activation during cytokine-induced granulocytic and monocytic differentiation.

    View details for DOI 10.1016/j.leukres.2005.03.016

    View details for Web of Science ID 000232242800012

    View details for PubMedID 16164983

Stanford Medicine Resources: