Professional Education

  • Doctor of Philosophy, Universite De Paris Vii (2016)

Stanford Advisors


All Publications

  • The Transcription Factor TCF1 in T Cell Differentiation and Aging. International journal of molecular sciences Kim, C., Jin, J., Weyand, C. M., Goronzy, J. J. 2020; 21 (18)


    The transcription factor T cell factor 1 (TCF1), a pioneer transcription factor as well as a downstream effector of WNT/beta-catenin signaling, is indispensable for T cell development in the thymus. Recent studies have highlighted the additional critical role of TCF1 in peripheral T cell responses to acute and chronic infections as well as cancer. Here, we review the regulatory functions of TCF1 in the differentiation of T follicular helper cells, memory T cells and recently described stem-like exhausted T cells, where TCF1 promotes less differentiated stem-like cell states by controlling common gene-regulatory networks. These studies also provide insights into the mechanisms of defective T cell responses in older individuals. We discuss alterations in TCF1 expression and related regulatory networks with age and their consequences for T cell responses to infections and vaccination. The increasing understanding of the pathways regulating TCF1 expression and function in aged T cells holds the promise of enabling the design of therapeutic interventions aiming at improving T cell responses in older individuals.

    View details for DOI 10.3390/ijms21186497

    View details for PubMedID 32899486

  • FOXO1 deficiency impairs proteostasis in aged T cells SCIENCE ADVANCES Jin, J., Li, X., Hu, B., Kim, C., Cao, W., Zhang, H., Weyand, C. M., Goronzy, J. J. 2020; 6 (17)
  • Functional pathways regulated by microRNA networks in CD8 T-cell aging AGING CELL Gustafson, C. E., Cavanagh, M. M., Jin, J., Weyand, C. M., Goronzy, J. J. 2019; 18 (1)

    View details for DOI 10.1111/acel.12879

    View details for Web of Science ID 000459022900033

  • Activation of miR-21-Regulated Pathways in Immune Aging Selects against Signatures Characteristic of Memory T Cells CELL REPORTS Kim, C., Hu, B., Jadhav, R. R., Jin, J., Zhang, H., Cavanagh, M. M., Akondy, R. S., Ahmed, R., Weyand, C. M., Goronzy, J. J. 2018; 25 (8): 2148-+
  • CCR5 adopts three homodimeric conformations that control cell surface delivery SCIENCE SIGNALING Jin, J., Momboisse, F., Boncompain, G., Koensgen, F., Zhou, Z., Cordeiro, N., Arenzana-Seisdedos, F., Perez, F., Lagane, B., Kellenberger, E., Brelot, A. 2018; 11 (529)


    Biophysical methods and x-ray crystallography have revealed that class A G protein-coupled receptors (GPCRs) can form homodimers. We combined computational approaches with receptor cross-linking, energy transfer, and a newly developed functional export assay to characterize the residues involved in the dimerization interfaces of the chemokine receptor CCR5, the major co-receptor for HIV-1 entry into cells. We provide evidence of three distinct CCR5 dimeric organizations, involving residues of transmembrane helix 5. Two dimeric states corresponded to unliganded receptors, whereas the binding of the inverse agonist maraviroc stabilized a third state. We found that CCR5 dimerization was required for targeting the receptor to the plasma membrane. These data suggest that dimerization contributes to the conformational diversity of inactive class A GPCRs and may provide new opportunities to investigate the cellular entry of HIV-1 and mechanisms for its inhibition.

    View details for DOI 10.1126/scisignal.aal2869

    View details for Web of Science ID 000431764800001

    View details for PubMedID 29739880

  • CCR5 structural plasticity shapes HIV-1 phenotypic properties. PLoS pathogens Colin, P. n., Zhou, Z. n., Staropoli, I. n., Garcia-Perez, J. n., Gasser, R. n., Armani-Tourret, M. n., Benureau, Y. n., Gonzalez, N. n., Jin, J. n., Connell, B. J., Raymond, S. n., Delobel, P. n., Izopet, J. n., Lortat-Jacob, H. n., Alcami, J. n., Arenzana-Seisdedos, F. n., Brelot, A. n., Lagane, B. n. 2018; 14 (12): e1007432


    CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.

    View details for DOI 10.1371/journal.ppat.1007432

    View details for PubMedID 30521629

    View details for PubMedCentralID PMC6283471

  • Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells Jin, J., Li, R., Jiang, C., Zhang, R., Ge, X., Liang, F., Sheng, X., Dai, W., Chen, M., Wu, J., Xiao, J., Su, W. BIOMED CENTRAL LTD. 2017: 933


    Coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are two of the major causes of hand, foot and mouth disease (HFMD) world-wide. Although many studies have focused on infection and pathogenic mechanisms, the transcriptome profile of the host cell upon CVA16 infection is still largely unknown.In this study, we compared the mRNA and miRNA expression profiles of human embryonic kidney 293T cells infected and non-infected with CVA16. We highlighted that the transcription of SCARB2, a cellular receptor for both CVA16 and EV71, was up-regulated by nearly 10-fold in infected cells compared to non-infected cells. The up-regulation of SCARB2 transcription induced by CVA16 may increase the possibility of subsequent infection of CVA16/EV71, resulting in the co-infection with two viruses in a single cell. This explanation would partly account for the co-circulation and genetic recombination of a great number of EV71 and CVA16 viruses. Based on correlation analysis of miRNAs and genes, we speculated that the high expression of SCARB2 is modulated by down-regulation of miRNA has-miR-3605-5p. At the same time, we found that differentially expressed miRNA target genes were mainly reflected in the extracellular membrane (ECM)-receptor interaction and circadian rhythm pathways, which may be related to clinical symptoms of patients infected with CVA16, such as aphthous ulcers, cough, myocarditis, somnolence and potentially meningoencephalitis. The miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may result in up-regulation of genes in these morbigenous pathways related to CVA16 and further cause clinical symptoms.The present study elucidated the changes in 293T cells upon CVA16 infection at transcriptome level, containing highly up-regulated SCARB2 and genes in ECM-receptor interaction and circadian rhythm pathways, and key miRNAs in gene expression regulation. These results provided novel insight into the pathogenesis of HFMD induced by CVA16 infection.

    View details for DOI 10.1186/s12864-016-3253-6

    View details for Web of Science ID 000408766800002

    View details for PubMedID 28198671

    View details for PubMedCentralID PMC5310284

  • Targeting Spare CC Chemokine Receptor 5 (CCR5) as a Principle to Inhibit HIV-1 Entry JOURNAL OF BIOLOGICAL CHEMISTRY Jin, J., Colin, P., Staropoli, I., Lima-Fernandes, E., Ferret, C., Demir, A., Rogee, S., Hartley, O., Randriamampita, C., Scott, M. G., Marullo, S., Sauvonnet, N., Arenzana-Seisdedos, F., Lagane, B., Brelot, A. 2014; 289 (27): 19042-19052


    CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-?-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of ?-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.

    View details for DOI 10.1074/jbc.M114.559831

    View details for Web of Science ID 000339062900035

    View details for PubMedID 24855645

    View details for PubMedCentralID PMC4081942

  • Development of a Coxsackievirus A16 neutralization assay based on pseudoviruses for measurement of neutralizing antibody titer in human serum JOURNAL OF VIROLOGICAL METHODS Jin, J., Ma, H., Xu, L., An, D., Sun, S., Huang, X., Kong, W., Jiang, C. 2013; 187 (2): 362?67


    Serum neutralizing antibody titers are indicative of protective immunity against Coxsackievirus A16 (CV-A16) and Enterovirus 71 (EV71), the two main etiological agents of hand, foot and mouth disease (HFMD), and provide the basis for evaluating vaccine efficacy. The current CV-A16 neutralization assay based on inhibition of cytopathic effects requires manual microscopic examination, which is time-consuming and labor-intensive. In this study, a high-throughput neutralization assay was developed by employing CV-A16 pseudoviruses expressing luciferase for detecting infectivity in rhabdomyosarcoma (RD) cells and measuring serum viral neutralizing antibodies. Without the need to use infectious CV-A16 strains, the neutralizing antibody titer against CV-A16 could be determined within 15h by measuring luciferase signals by this assay. The pseudovirus CV-A16 neutralization assay (pCNA) was validated by comparison with a conventional CV-A16 neutralization assay (cCNA) in testing 174 human serum samples collected from children (age <5 years). The neutralizing antibody titers determined by these two assays were well correlated (R(2)=0.7689). These results suggest that the pCNA can serve as a rapid and objective procedure for the measurement of neutralizing antibodies against CV-A16.

    View details for DOI 10.1016/j.jviromet.2012.11.014

    View details for Web of Science ID 000315074900026

    View details for PubMedID 23178532

Footer Links:

Stanford Medicine Resources: