All Publications

  • Single-Cell Delineation of Who's on First and Second Heart Fields During Development CIRCULATION RESEARCH Galdos, F. X., Wu, S. M. 2019; 125 (4): 411?13
  • Cardiac Regeneration Lessons From Development CIRCULATION RESEARCH Galdos, F. X., Guo, Y., Paige, S. L., VanDusen, N. J., Wu, S. M., Pu, W. T. 2017; 120 (6): 941-959


    Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.

    View details for DOI 10.1161/CIRCRESAHA.116.309040

    View details for Web of Science ID 000397330700007

    View details for PubMedID 28302741

  • Nkx2.5+?Cardiomyoblasts Contribute to Cardiomyogenesis in the Neonatal Heart. Scientific reports Serpooshan, V., Liu, Y. H., Buikema, J. W., Galdos, F. X., Chirikian, O., Paige, S., Venkatraman, S., Kumar, A., Rawnsley, D. R., Huang, X., Pijnappels, D. A., Wu, S. M. 2017; 7 (1): 12590


    During normal lifespan, the mammalian heart undergoes limited renewal of cardiomyocytes. While the exact mechanism for this renewal remains unclear, two possibilities have been proposed: differentiated myocyte replication and progenitor/immature cell differentiation. This study aimed to characterize a population of cardiomyocyte precursors in the neonatal heart and to determine their requirement for cardiac development. By tracking the expression of an embryonic Nkx2.5 cardiac enhancer, we identified cardiomyoblasts capable of differentiation into striated cardiomyocytes in vitro. Genome-wide expression profile of neonatal Nkx2.5+?cardiomyoblasts showed the absence of sarcomeric gene and the presence of cardiac transcription factors. To determine the lineage contribution of the Nkx2.5+?cardiomyoblasts, we generated a doxycycline suppressible Cre transgenic mouse under the regulation of the Nkx2.5 enhancer and showed that neonatal Nkx2.5+?cardiomyoblasts mature into cardiomyocytes in vivo. Ablation of neonatal cardiomyoblasts resulted in ventricular hypertrophy and dilation, supporting a functional requirement of the Nkx2.5+?cardiomyoblasts. This study provides direct lineage tracing evidence that a cardiomyoblast population contributes to cardiogenesis in the neonatal heart. The cell population identified here may serve as a promising therapeutic for pediatric cardiac regeneration.

    View details for PubMedID 28974782

Footer Links:

Stanford Medicine Resources: