Education & Certifications

  • BA, Columbia University, Neuroscience & Behavior (2013)

Stanford Advisors


All Publications

  • Integrating genomic features for non-invasive early lung cancer detection NATURE Chabon, J. J., Hamilton, E. G., Kurtz, D. M., Esfahani, M. S., Moding, E. J., Stehr, H., Schroers-Martin, J., Nabet, B. Y., Chen, B., Chaudhuri, A. A., Liu, C., Hui, A. B., Jin, M. C., Azad, T. D., Almanza, D., Jeon, Y., Nesselbush, M. C., Keh, L., Bonilla, R. F., Yoo, C. H., Ko, R. B., Chen, E. L., Merriott, D. J., Massion, P. P., Mansfield, A. S., Jen, J., Ren, H. Z., Lin, S. H., Costantino, C. L., Burr, R., Tibshirani, R., Gambhir, S. S., Berry, G. J., Jensen, K. C., West, R. B., Neal, J. W., Wakelee, H. A., Loo, B. W., Kunder, C. A., Leung, A. N., Lui, N. S., Berry, M. F., Shrager, J. B., Nair, V. S., Haber, D. A., Sequist, L. V., Alizadeh, A. A., Diehn, M. 2020
  • Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology Azad, T. D., Chaudhuri, A. A., Fang, P., Qiao, Y., Esfahani, M. S., Chabon, J. J., Hamilton, E. G., Yang, Y. D., Lovejoy, A., Newman, A. M., Kurtz, D. M., Jin, M., Schroers-Martin, J., Stehr, H., Liu, C. L., Bik-Yu Hui, A., Patel, V., Maru, D., Lin, S. H., Alizadeh, A. A., Diehn, M. 2019


    Biomarkers are needed to identify patients at risk of tumor progression following chemoradiotherapy for localized esophageal cancer. These could improve identification of patients at risk for cancer progression and selection of therapy.We performed deep sequencing (CAPP-Seq) analyses of plasma cell-free DNA collected from 45 patients before and after chemoradiotherapy for esophageal cancer, as well as DNA from leukocytes, and fixed esophageal tumor biopsies collected during esophagogastroduodenoscopy. Patients were treated from May 2010 through October 2015; 23 patients subsequently underwent esophagectomy and 22 did not undergo surgery. We also sequenced DNA from blood samples from 40 healthy individuals (controls). We analyzed 802 regions of 607 genes for single-nucleotide variants previously associated with esophageal adenocarcinoma or squamous cell carcinoma. Patients underwent imaging analyses 6-8 weeks after chemoradiotherapy and were followed for 5 years. Our primary aim was to determine whether detection of circulating tumor DNA (ctDNA) following chemoradiotherapy is associated with risk of tumor progression (growth of local, regional, or distant tumors, detected by imaging or biopsy).The median proportion of tumor-derived DNA in total cell-free DNA before treatment was 0.07%, indicating that ultrasensitive assays are needed for quantification and analysis of ctDNA from localized esophageal tumors. Detection of ctDNA following chemoradiotherapy was associated with tumor progression (hazard ratio, 18.7; P<.0001), formation of distant metastases (hazard ratio, 32.1; P<.0001), and shorter disease-specific survival times (hazard ratio, 23.1; P<.0001). A higher proportion of patients with tumor progression had new mutations detected in plasma samples collected after chemoradiotherapy than patients without progression (P=.03). Detection of ctDNA after chemoradiotherapy preceded radiographic evidence of tumor progression by an average of 2.8 months. Among patients who received chemoradiotherapy without surgery, combined ctDNA and metabolic imaging analysis predicted progression in 100% of patients with tumor progression, compared with 71% for only ctDNA detection and 57% for only metabolic imaging analysis (P<.001 for comparison of either technique to combined analysis).In an analysis of cell-free DNA in blood samples from patients who underwent chemoradiotherapy for esophageal cancer, detection of ctDNA was associated with tumor progression, metastasis, and disease-specific survival. Analysis of ctDNA might be used to identify patients at highest risk for tumor progression.

    View details for DOI 10.1053/j.gastro.2019.10.039

    View details for PubMedID 31711920

  • Distinct Chromatin Accessibility Profiles of Lymphoma Subtypes Revealed By Targeted Cell Free DNA Profiling Mehrmohamadi, M., Esfahani, M. S., Soo, J., Scherer, F., Schroers-Martin, J. G., Chen, B., Kurtz, D. M., Hamilton, E., Liu, C., Diehn, M., Alizadeh, A. A. AMER SOC HEMATOLOGY. 2018
  • Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs) in maternal and fetal tissues, and associations with fetal cytochrome P450 gene expression. Environment international Zota, A. R., Mitro, S. D., Robinson, J. F., Hamilton, E. G., Park, J. S., Parry, E., Zoeller, R. T., Woodruff, T. J. 2018; 112: 269?78


    Human fetal exposures to polybrominated diphenyl ethers (PBDEs) and their metabolites (OH-PBDEs) are unique from adults, and in combination with a different metabolic profile, may make fetal development more sensitive to adverse health outcomes from these exposures. However, we lack data to characterize human fetal PBDE exposures and the metabolic factors that can influence these exposures.We examined differences between 2nd trimester maternal and fetal exposures to PBDEs and OH-PBDEs. We also characterized fetal cytochrome P450 (CYP) mRNA expression and its associations with PBDE exposures.We collected paired samples of maternal serum and fetal liver (n=86) with a subset having matched placenta (n=50). We measured PBDEs, OH-PBDEs, and mRNA expression of CYP genes (e.g. CYP1A1, -2E1, -2J2, -2C9) in all samples. As a sensitivity analysis, we measured PBDEs and OH-PBDEs in umbilical cord serum from a subset (n=22).BDE-47 was detected in ?96% of all tissues. Unadjusted ?PBDEs concentrations were highest in fetal liver (geometric mean (GM)=0.72ng/g), whereas lipid-adjusted concentrations were highest in cord serum (111.12ng/g lipid). In both cases, fetal concentrations were approximately two times higher than maternal serum levels (GM=0.33ng/g or 48.75ng/g lipid). ?OH-PBDEs were highest in maternal and cord sera and 20-200 times lower than PBDE concentrations. In regression models, maternal BDE-47 explained more of the model variance of liver than of placenta BDE-47 concentrations (adjusted R2=0.79 vs 0.48, respectively). In adjusted logistic regression models, ?PBDEs were positively associated with expression of CYP2E1 and -2J2 (placenta), and -1A1 (liver) (p<0.05).Our findings suggest that under normal conditions of mid-gestation, the human fetus is directly exposed to concentrations of PBDEs that may be higher than previously estimated based on maternal serum and that these exposures are associated with the expression of mRNAs coding for CYP enzymes. These results will help frame and interpret findings from studies that use maternal or cord blood as proxy measures of fetal exposures, and will inform the molecular pathways by which PBDEs affect human health.

    View details for DOI 10.1016/j.envint.2017.12.030

    View details for PubMedID 29316516

  • Transcriptional Dynamics of Cultured Human Villous Cytotrophoblasts. Endocrinology Robinson, J. F., Kapidzic, M., Gormley, M., Ona, K., Dent, T., Seifikar, H., Hamilton, E. G., Fisher, S. J. 2017; 158 (6): 1581-1594


    During human pregnancy, cytotrophoblasts (CTBs) play key roles in uterine invasion, vascular remodeling, and anchoring of the feto-placental unit. Due to the challenges associated with studying human placentation in utero, cultured primary villous CTBs are used as a model of the differentiation pathway that leads to invasion of the uterine wall. In vitro, CTBs emulate in vivo cell behaviors, such as migration, aggregation, and substrate penetration. Although some of the molecular features related to these cell behaviors have been described, the underlying mechanisms, at a global level, remain undefined at midgestation. Thus, in this study, we characterized second-trimester CTB differentiation/invasion in vitro, correlating the major morphological transitions with the transcriptional changes that occurred at these steps. After plating on Matrigel as individual cells, CTBs migrated toward each other and formed multicellular aggregates. In parallel, using a microarray approach, we observed differentially expressed (DE) genes across time, which were enriched for numerous functions, including cell migration, vascular remodeling, morphogenesis, cell communication, and inflammatory signaling. DE genes encoded several molecules that we and others previously linked to critical CTB function in vivo, suggesting that the novel DE molecules we discovered played important roles. Immunolocalization confirmed that CTBs in situ gave a signal for two of the most highly expressed genes in vitro. In summary, we characterized, at a global level, the temporal dynamics of primary human CTB gene expression in culture. These data will enable future analyses of various types of in vitro perturbations-for example, modeling disease processes and environmental exposures.

    View details for DOI 10.1210/en.2016-1635

    View details for PubMedID 28323933

    View details for PubMedCentralID PMC5460928

  • An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature methods Corces, M. R., Trevino, A. E., Hamilton, E. G., Greenside, P. G., Sinnott-Armstrong, N. A., Vesuna, S., Satpathy, A. T., Rubin, A. J., Montine, K. S., Wu, B., Kathiria, A., Cho, S. W., Mumbach, M. R., Carter, A. C., Kasowski, M., Orloff, L. A., Risca, V. I., Kundaje, A., Khavari, P. A., Montine, T. J., Greenleaf, W. J., Chang, H. Y. 2017


    We present Omni-ATAC, an improved ATAC-seq protocol for chromatin accessibility profiling that works across multiple applications with substantial improvement of signal-to-background ratio and information content. The Omni-ATAC protocol generates chromatin accessibility profiles from archival frozen tissue samples and 50-?m sections, revealing the activities of disease-associated DNA elements in distinct human brain structures. The Omni-ATAC protocol enables the interrogation of personal regulomes in tissue context and translational studies.

    View details for PubMedID 28846090

  • DNA Methylation and Somatic Mutations Converge on the Cell Cycle and Define Similar Evolutionary Histories in Brain Tumors CANCER CELL Mazor, T., Pankov, A., Johnson, B. E., Hong, C., Hamilton, E. G., Bell, R. J., Smirnov, I. V., Reis, G. F., Phillips, J. J., Barnes, M. J., Idbaih, A., Alentorn, A., Kloezeman, J. J., Lamfers, M. L., Bollen, A. W., Taylor, B. S., Molinaro, A. M., Olshen, A. B., Chang, S. M., Song, J. S., Costello, J. F. 2015; 28 (3): 307-317


    The evolutionary history of tumor cell populations can be reconstructed from patterns of genetic alterations. In contrast to stable genetic events, epigenetic states are reversible and sensitive to the microenvironment, prompting the question whether epigenetic information can similarly be used to discover tumor phylogeny. We examined the spatial and temporal dynamics of DNA methylation in a cohort of low-grade gliomas and their patient-matched recurrences. Genes transcriptionally upregulated through promoter hypomethylation during malignant progression to high-grade glioblastoma were enriched in cell cycle function, evolving in parallel with genetic alterations that deregulate the G1/S cell cycle checkpoint. Moreover, phyloepigenetic relationships robustly recapitulated phylogenetic patterns inferred from somatic mutations. These findings highlight widespread co-dependency of genetic and epigenetic events throughout brain tumor evolution.

    View details for DOI 10.1016/j.ccell.2015.07.012

    View details for Web of Science ID 000361420900009

    View details for PubMedID 26373278

    View details for PubMedCentralID PMC4573399

Footer Links:

Stanford Medicine Resources: