Bio

Academic Appointments


Professional Education


  • BS, University of Illinois at Urbana-Champaign, Biology (1988)
  • MD, Loyola University Chicago, Medicine (1992)
  • Internship, St. Joseph Hospital / Northwestern University, Internal Medicine (1994)
  • Residency, Foster G. McGaw Hospital / Loyola University Chicago, Internal Medicine (1996)
  • Fellowship, Stanford University, Infectious Diseases (2007)

Community and International Work


  • Orientation Leader, Support for International Change, Tanzania, Africa

    Topic

    HIV / AIDS prevention

    Populations Served

    Africans living in rural communities

    Location

    International

    Ongoing Project

    Yes

    Opportunities for Student Involvement

    Yes

Research & Scholarship

Current Research and Scholarly Interests


My research explores the genetic diversity of human-associated microbiota in health and disease, and the accompanying host transcriptional response. This work relies largely on the application of cultivation-independent methods. An overarching goal of this research is to illuminate stereotypic patterns of microbial community assembly that are associated with specific clinical syndromes. This includes: i) profiling the commensal microbiota in distinct anatomic sites of interest; ii) identifying uncultivated pathogens associated with cryptic infections; iii) enumerating fastidious and minority constituents of polymicrobial infections; and, iv) characterizing perturbations of mixed microbial communities that confer increased disease risk. To achieve these aims, we are using various broad-range molecular approaches, including highly-parallel and quantitative methods, to characterize spatial, temporal and dose-response associations of specific microbial groups with physiologic and pathologic host states. The methodologies I use include, among others, sequence analysis of rDNA clone libraries, real-time quantitative PCR, microbial rDNA-based microarrays, and human cDNA-based microarrays.

The current thrust of my research emphasizes microbial invasion of the amniotic cavity in association with cryptic cases of preterm delivery. We are fortunate to have an ongoing collaboration with the research group of Roberto Romero, MD, Chief, Perinatology Research Branch, NICHD, NIH to investigate - in a broad and comprehensive manner - patterns of microbial prevalence, diversity and abundance that are associated with preterm delivery and its adverse neonatal sequelae. We also seek to characterize, by means of genome-scale transcriptional profiling of the host response, gene expression patterns that are predictive of preterm delivery.

Teaching

Graduate and Fellowship Programs


Publications

All Publications


  • Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proceedings of the National Academy of Sciences of the United States of America Callahan, B. J., DiGiulio, D. B., Goltsman, D. S., Sun, C. L., Costello, E. K., Jeganathan, P., Biggio, J. R., Wong, R. J., Druzin, M. L., Shaw, G. M., Stevenson, D. K., Holmes, S. P., Relman, D. A. 2017

    Abstract

    Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. Previous studies have suggested that the maternal vaginal microbiota contributes to the pathophysiology of PTB, but conflicting results in recent years have raised doubts. We conducted a study of PTB compared with term birth in two cohorts of pregnant women: one predominantly Caucasian (n = 39) at low risk for PTB, the second predominantly African American and at high-risk (n = 96). We profiled the taxonomic composition of 2,179 vaginal swabs collected prospectively and weekly during gestation using 16S rRNA gene sequencing. Previously proposed associations between PTB and lower Lactobacillus and higher Gardnerella abundances replicated in the low-risk cohort, but not in the high-risk cohort. High-resolution bioinformatics enabled taxonomic assignment to the species and subspecies levels, revealing that Lactobacillus crispatus was associated with low risk of PTB in both cohorts, while Lactobacillus iners was not, and that a subspecies clade of Gardnerella vaginalis explained the genus association with PTB. Patterns of cooccurrence between L. crispatus and Gardnerella were highly exclusive, while Gardnerella and L. iners often coexisted at high frequencies. We argue that the vaginal microbiota is better represented by the quantitative frequencies of these key taxa than by classifying communities into five community state types. Our findings extend and corroborate the association between the vaginal microbiota and PTB, demonstrate the benefits of high-resolution statistical bioinformatics in clinical microbiome studies, and suggest that previous conflicting results may reflect the different risk profile of women of black race.

    View details for DOI 10.1073/pnas.1705899114

    View details for PubMedID 28847941

  • A microbial perspective of human developmental biology NATURE Charbonneau, M. R., Blanton, L. V., DiGiulio, D. B., Relman, D. A., Lebrilla, C. B., Mills, D. A., Gordon, J. I. 2016; 535 (7610): 48-55

    Abstract

    When most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment. Given the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for the establishment of 'human microbial observatories' designed to examine microbial community development in birth cohorts representing populations with diverse anthropological characteristics, including those undergoing rapid change.

    View details for DOI 10.1038/nature18845

    View details for Web of Science ID 000379015600027

    View details for PubMedID 27383979

  • Temporal and spatial variation of the human microbiota during pregnancy PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA DiGiulio, D. B., Callahan, B. J., McMurdie, P. J., Costello, E. K., Lyell, D. J., Robaczewska, A., Sun, C. L., Goltsman, D. S., Wong, R. J., Shaw, G., Stevenson, D. K., Holmes, S. P., Relman, D. A. 2015; 112 (35): 11060-11065

    Abstract

    Despite the critical role of the human microbiota in health, our understanding of microbiota compositional dynamics during and after pregnancy is incomplete. We conducted a case-control study of 49 pregnant women, 15 of whom delivered preterm. From 40 of these women, we analyzed bacterial taxonomic composition of 3,767 specimens collected prospectively and weekly during gestation and monthly after delivery from the vagina, distal gut, saliva, and tooth/gum. Linear mixed-effects modeling, medoid-based clustering, and Markov chain modeling were used to analyze community temporal trends, community structure, and vaginal community state transitions. Microbiota community taxonomic composition and diversity remained remarkably stable at all four body sites during pregnancy (P > 0.05 for trends over time). Prevalence of a Lactobacillus-poor vaginal community state type (CST 4) was inversely correlated with gestational age at delivery (P = 0.0039). Risk for preterm birth was more pronounced for subjects with CST 4 accompanied by elevated Gardnerella or Ureaplasma abundances. This finding was validated with a set of 246 vaginal specimens from nine women (four of whom delivered preterm). Most women experienced a postdelivery disturbance in the vaginal community characterized by a decrease in Lactobacillus species and an increase in diverse anaerobes such as Peptoniphilus, Prevotella, and Anaerococcus species. This disturbance was unrelated to gestational age at delivery and persisted for up to 1 y. These findings have important implications for predicting premature labor, a major global health problem, and for understanding the potential impact of a persistent, altered postpartum microbiota on maternal health, including outcomes of pregnancies following short interpregnancy intervals.

    View details for DOI 10.1073/pnas.1502875112

    View details for Web of Science ID 000360383200068

  • Diversity of microbes in amniotic fluid SEMINARS IN FETAL & NEONATAL MEDICINE DiGiulio, D. B. 2012; 17 (1): 2-11

    Abstract

    Recent polymerase chain reaction (PCR)-based studies estimate the prevalence of microbial invasion of the amniotic cavity (MIAC) to be ?30-50% higher than that detected by cultivation-based methods. Some species that have been long implicated in causing MIAC remain among the common invaders (e.g. Ureaplasma spp., Mycoplasma spp., Fusobacterium spp. Streptococcus spp., Bacteroides spp. and Prevotella spp.). Yet we now know from studies based on PCR of the 16S ribosomal DNA that cultivation-resistant anaerobes belonging to the family Fusobacteriaceae (particularly Sneathia sanguinegens, and Leptotrichia spp.) are also commonly found in amniotic fluid. Other diverse microbes detected by PCR of amniotic fluid include as-yet uncultivated and uncharacterized species. The presence of some microbial taxa is associated with specific host factors (e.g. Candida spp. and an indwelling intrauterine device). It appears that MIAC is polymicrobial in 24-67% of cases, but the potential role of pathogen synergy is poorly understood. A causal relationship between diverse microbes, as detected by PCR, and preterm birth is supported by types of association (e.g. space, time and dose) proposed as alternatives to Koch's postulates for inferring causality from molecular findings. The microbial census of the amniotic cavity remains unfinished. A more complete understanding may inform future research directions leading to improved strategies for preventing, diagnosing and treating MIAC.

    View details for DOI 10.1016/j.siny.2011.10.001

    View details for Web of Science ID 000300594700002

    View details for PubMedID 22137615

  • Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based methods JOURNAL OF PERINATAL MEDICINE DiGiulio, D. B., Gervasi, M., Romero, R., Mazaki-Tovi, S., Vaisbuch, E., Kusanovic, J. P., Seok, K. S., Gomez, R., Mittal, P., Gotsch, F., Chaiworapongsa, T., Oyarzun, E., Kim, C. J., Relman, D. A. 2010; 38 (5): 503-513

    Abstract

    Infection has been implicated in the pathogenesis of preeclampsia, yet the association between microbial invasion of the amniotic cavity (MIAC) and preeclampsia has not been determined. The aim of this study was to determine the prevalence, and microbial diversity associated with MIAC, as well as the nature of the host response to MIAC in patients with preeclampsia.Amniotic fluid (AF) from 62 subjects with preeclampsia, not in labor, was analyzed with both cultivation and molecular methods. Broad-range and group-specific PCR assays targeting small subunit ribosomal DNA, or other gene sequences, from bacteria, fungi and archaea were used. Results were correlated with measurements of host inflammatory response, including AF white blood cell count and AF concentrations of glucose, interleukin-6 (IL-6) and MMP-8.1) The rate of MIAC in preeclampsia was 1.6% (1/62) based on cultivation techniques, 8% (5/62) based on PCR, and 9.6% (6/62) based on the combined results of both methods; 2) among the six patients diagnosed with MIAC, three had a positive PCR for Sneathia/Leptotrichia spp.; and 3) patients with MIAC were more likely to have evidence of an inflammatory response in the amniotic cavity than those without MIAC, as determined by a higher median AF IL-6 [1.65 ng/mL interquartile range (IQR): 0.35-4.62 vs. 0.22 ng/mL IQR: 0.12-0.51; P=0.002).The prevalence of MIAC in preeclampsia is low, suggesting that intra-amniotic infection plays only a limited role in preeclampsia. However, the unexpectedly high number of positive AF specimens for Sneathia/Leptotrichia warrants further investigation.

    View details for DOI 10.1515/JPM.2010.078

    View details for Web of Science ID 000281566600009

    View details for PubMedID 20482470

    View details for PubMedCentralID PMC3325506

  • Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses JOURNAL OF PERINATAL MEDICINE DiGiulio, D. B., Gervasi, M. T., Romero, R., Vaisbuch, E., Mazaki-Tovi, S., Kusanovic, J. P., Seok, K. S., Gomez, R., Mittal, P., Gotsch, F., Chaiworapongsa, T., Oyarzun, E., Kim, C. J., Relman, D. A. 2010; 38 (5): 495-502

    Abstract

    Microbial invasion of the amniotic cavity (MIAC) has been detected in women with preterm labor, preterm prelabor rupture of membranes (PROM), and in patients at term with PROM or in spontaneous labor. Intrauterine infection is recognized as a potential cause of fetal growth restriction; yet, the frequency of MIAC in pregnancies with small-for-gestational-age (SGA) fetuses is unknown. The aim of this study was to determine the frequency, diversity and relative abundance of microbes in amniotic fluid (AF) of women with an SGA neonate using a combination of culture and molecular methods.AF from 52 subjects with an SGA neonate was analyzed with both cultivation and molecular methods in a retrospective cohort study. Broad-range and group-specific PCR assays targeted small subunit rDNA, or other gene sequences, from bacteria, fungi and archaea. Results of microbiologic studies were correlated with indices of the host inflammatory response.1) All AF samples (n=52) were negative for microorganisms based on cultivation techniques, whereas 6% (3/52) were positive based on PCR; and 2) intra-amniotic inflammation was detected in one of the three patients with a positive PCR result, as compared with three patients (6.1%) of the 49 with both a negative culture and a negative PCR (P=0.2).MIAC is detected by PCR in some patients with an SGA fetus who were not in labor at the time of AF collection.

    View details for DOI 10.1515/JPM.2010.076

    View details for Web of Science ID 000281566600008

    View details for PubMedID 20482466

    View details for PubMedCentralID PMC2962935

  • Preterm premature rupture of the membranes: current approaches to evaluation and management AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY DiGiulio, D. B., Romero, R., Kusanovic, J. P., Gomez, R., Kim, C. J., Seok, K. S., Gotsch, F., Mazaki-Tovi, S., Vaisbuch, E., Sanders, K., Bik, E. M., Chaiworapongsa, T., Oyarzun, E., Relman, D. A. 2010; 64 (1): 38-57

    Abstract

    The role played by microbial invasion of the amniotic cavity (MIAC) in preterm pre-labor rupture of membranes (pPROM) is inadequately characterized, in part because of reliance on cultivation-based methods.Amniotic fluid from 204 subjects with pPROM was analyzed with both cultivation and molecular methods in a retrospective cohort study. Broad-range and group-specific polymerase chain reaction (PCR) assays targeted small subunit ribosomal DNA (rDNA), or other gene sequences, from bacteria, fungi, and archaea. Results were correlated with measurements of host inflammation, as well as pregnancy and perinatal outcomes.The prevalence of MIAC was 34% (70/204) by culture, 45% (92/204) by PCR, and 50% (101/204) by both methods combined. The number of bacterial species revealed by PCR (44 species-level phylotypes) was greater than that by culture (14 species) and included as-yet uncultivated taxa. Some taxa detected by PCR have been previously associated with the gastrointestinal tract (e.g., Coprobacillus sp.), the mouth (e.g., Rothia dentocariosa), or the vagina in the setting of bacterial vaginosis (e.g., Atopobium vaginae). The relative risk for histologic chorioamnionitis was 2.1 for a positive PCR [95% confidence interval (CI), 1.4-3.0] and 2.0 for a positive culture (95% CI, 1.4-2.7). Bacterial rDNA abundance exhibited a dose relationship with gestational age at delivery (R(2) = 0.26; P < 0.01). A positive PCR was associated with lower mean birthweight, and with higher rates of respiratory distress syndrome and necrotizing enterocolitis (P < 0.05 for each outcome).MIAC in pPROM is more common than previously recognized and is associated in some cases with uncultivated taxa, some of which are typically associated with the gastrointestinal tract. The detection of MIAC by molecular methods has clinical significance.

    View details for DOI 10.1111/j.1600-0897.2010.00830.x

    View details for Web of Science ID 000278395800008

    View details for PubMedID 20331587

    View details for PubMedCentralID PMC2907911

  • Microbial invasion of the amniotic cavity in pregnancies with small-for-gestational-age fetuses. J Perinat Med. DiGiulio DB, Gervasi M, Romero R, Vaisbuch E, Mazaki-Tovi S, Kusanovic JP, Seok KS, Gómez R, Mittal P, Gotsch F, Chaiworapongsa T, Oyarzún E, Kim CJ, Relman DA. 2010; May 20
  • Prevalence and Diversity of Microbes in the Amniotic Fluid, the Fetal Inflammatory Response, and Pregnancy Outcome in Women with Preterm Prelabor Rupture of Membranes. Am J Reprod Immunol DiGiulio DB, DiGiulio DB, Romero R, Kusanovic JP, Gmez R, Kim CJ, Seok KS, Gotsch F, Mazaki-Tovi S, Vaisbuch E, Sanders K, Bik EM, Chaiworapongsa T, Oyarzn E, Relman DA 2010; 64 (1): 38-57
  • Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequence-based methods. J Perinat Med DiGiulio DB, Gervasi M, Romero R, Mazaki-Tovi S, Vaisbuch E, Kusanovic JP, Seok KS, Gómez R, Mittal P, Gotsch F, Chaiworapongsa T, Oyarzún E, Kim CJ, Relman DA 2010; May 20
  • Majority Rules? Tallying the Microbial Census in an Abscess by Means of Molecular Methods CLINICAL INFECTIOUS DISEASES DiGiulio, D. B., Relman, D. A. 2009; 48 (9): 1179-1181

    View details for DOI 10.1086/597579

    View details for Web of Science ID 000264897300002

    View details for PubMedID 19335163

  • Majority Rules? Tallying the Microbial Census in an Abscess by Means of Molecular Methods. Clin Infect Dis DiGiulio DB, Relman DA 2009; 48 (9): 1179-81
  • Microbial Prevalence, Diversity and Abundance in Amniotic Fluid During Preterm Labor: A Molecular and Culture-Based Investigation PLOS ONE DiGiulio, D. B., Romero, R., Amogan, H. P., Kusanovic, J. P., Bik, E. M., Gotsch, F., Kim, C. J., Erez, O., Edwin, S., Relman, D. A. 2008; 3 (8)

    Abstract

    Preterm delivery causes substantial neonatal mortality and morbidity. Unrecognized intra-amniotic infections caused by cultivation-resistant microbes may play a role. Molecular methods can detect, characterize and quantify microbes independently of traditional culture techniques. However, molecular studies that define the diversity and abundance of microbes invading the amniotic cavity, and evaluate their clinical significance within a causal framework, are lacking.In parallel with culture, we used broad-range end-point and real-time PCR assays to amplify, identify and quantify ribosomal DNA (rDNA) of bacteria, fungi and archaea from amniotic fluid of 166 women in preterm labor with intact membranes. We sequenced up to 24 rRNA clones per positive specimen and assigned taxonomic designations to approximately the species level. Microbial prevalence, diversity and abundance were correlated with host inflammation and with gestational and neonatal outcomes. Study subjects who delivered at term served as controls. The combined use of molecular and culture methods revealed a greater prevalence (15% of subjects) and diversity (18 taxa) of microbes in amniotic fluid than did culture alone (9.6% of subjects; 11 taxa). The taxa detected only by PCR included a related group of fastidious bacteria, comprised of Sneathia sanguinegens, Leptotrichia amnionii and an unassigned, uncultivated, and previously-uncharacterized bacterium; one or more members of this group were detected in 25% of positive specimens. A positive PCR was associated with histologic chorioamnionitis (adjusted odds ratio [OR] 20; 95% CI, 2.4 to 172), and funisitis (adjusted OR 18; 95% CI, 3.1 to 99). The positive predictive value of PCR for preterm delivery was 100 percent. A temporal association between a positive PCR and delivery was supported by a shortened amniocentesis-to-delivery interval (adjusted hazard ratio 4.6; 95% CI, 2.2 to 9.5). A dose-response association was demonstrated between bacterial rDNA abundance and gestational age at delivery (r(2) = 0.42; P<0.002).The amniotic cavity of women in preterm labor harbors DNA from a greater diversity of microbes than previously suspected, including as-yet uncultivated, previously-uncharacterized taxa. The strength, temporality and gradient with which these microbial sequence types are associated with preterm delivery support a causal relationship.

    View details for DOI 10.1371/journal.pone.0003056

    View details for Web of Science ID 000264796300003

    View details for PubMedID 18725970

    View details for PubMedCentralID PMC2516597

  • Development of the human infant intestinal microbiota PLOS BIOLOGY Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., Brown, P. O. 2007; 5 (7): 1556-1573

    Abstract

    Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

    View details for Web of Science ID 000249124400020

    View details for PubMedID 17594176

    View details for PubMedCentralID PMC1896187

  • Scedosporium apiospermum soft tissue infection successfully treated with voriconazole: Potential pitfalls in the transition from intravenous to oral therapy JOURNAL OF CLINICAL MICROBIOLOGY Schaenman, J. M., DiGiulio, D. B., Mirels, L. F., McClenny, N. M., Berry, G. J., Fothergill, A. W., Rinaldi, M. G., Montoya, J. G. 2005; 43 (2): 973-977

    Abstract

    An immunocompromised patient with an invasive soft tissue infection due to Scedosporium apiospermum was successfully treated with voriconazole and surgical debridement. After transition from intravenous to oral therapy, successive adjustments of the oral dose were required to achieve complete resolution. For soft tissue infections due to molds characterized by thin, septate hyphae branching at acute angles, voriconazole should be considered a first-line antifungal agent. The potential usefulness of plasma voriconazole levels for guiding optimal therapy should be investigated.

    View details for DOI 10.1128/JCM.43.2.973-977.2005

    View details for Web of Science ID 000227045600082

    View details for PubMedID 15695722

  • Human monkeypox: an emerging zoonosis LANCET INFECTIOUS DISEASES Di Giulio, D. B., Eckburg, P. B. 2004; 4 (1): 15-25

    Abstract

    Human monkeypox is a rare viral zoonosis endemic to central and western Africa that has recently emerged in the USA. Laboratory diagnosis is important because the virus can cause disease that is clinically indistinguishable from other pox-like illnesses, particularly smallpox and chickenpox. Although the natural animal reservoir of the monkeypox virus is unknown, rodents are the probable source of its introduction into the USA. A clear understanding of the virulence and transmissibility of human monkeypox has been limited by inconsistencies in epidemiological investigations. Monkeypox is the most important orthopoxvirus infection in human beings since the eradication of smallpox in the 1970s. There is currently no proven treatment for human monkeypox, and questions about its potential as an agent of bioterrorism persist.

    View details for Web of Science ID 000187806000019

    View details for PubMedID 14720564

Footer Links:

Stanford Medicine Resources: