School of Medicine


Showing 201-234 of 234 Results

  • Gary K. Steinberg, MD, PhD

    Gary K. Steinberg, MD, PhD

    Bernard and Ronni Lacroute-William Randolph Hearst Professor in Neurosurgery and Neurosciences and Professor, by courtesy, of Neurology

    Current Research and Scholarly Interests Our laboratory investigates the pathophysiology and treatment of cerebral ischemia, and methods to restore neurologic function after stroke. Treatment strategies include brain hypothermia, stem cell transplantation and optogenetic stimulation. Our clinical research develops innovative surgical, endovascular and radiosurgical approaches for treating difficult intracranial aneurysms, complex vascular malformations and occlusive disease, including Moyamoya disease, as well as stem cell transplant.

  • Eric S Sussman, MD

    Eric S Sussman, MD

    Affiliate, Dean's Office Operations - Dean Other

    Current Research and Scholarly Interests My primary academic interest is to expand the scope of precision medicine in cerebrovascular neurosurgery. Specifically, I utilize advanced neuroimaging, electrophysiology, and proteomics and metabolomics in order to optimize and personalize the clinical management of patients with hemorrhagic and ischemic stroke. In addition, I utilize large institutional and national databases to advance clinical outcomes following cerebrovascular insults, and to clarify how improvements in systems-based practices can improve the quality and value of care for cerebrovascular patients.

  • Peter Tass

    Peter Tass

    Professor of Neurosurgery

    Bio Dr. Peter Tass investigates and develops neuromodulation techniques for understanding and treating neurologic conditions such as Parkinson?s disease, epilepsy, dysfunction following stroke and tinnitus. He creates invasive and non-invasive therapeutic procedures by means of comprehensive computational neuroscience studies and advanced data analysis techniques. The computational neuroscience studies guide experiments that use clinical electrophysiology measures, such as high density EEG recordings and MRI imaging, and various outcome measures. He has pioneered a neuromodulation approach based on thorough computational modelling that employs dynamic self-organization, plasticity and other neuromodulation principles to produce sustained effects after stimulation. To investigate stimulation effects and disease-related brain activity, he focuses on the development of stimulation methods that cause a sustained neural desynchronization by an unlearning of abnormal synaptic interactions. He also performs and contributes to pre-clinical and clinical research in related areas.

  • Armine Tayag

    Armine Tayag

    Affiliate, Neurosurgery

    Bio Armine is a Nurse Practitioner who joined Stanford Neurosurgery/ Cyberknife Radiosurgery Program in 2014. She completed her Master of Science in Nursing , Family Nurse Practitioner Degree at Holy Names University in Oakland, Ca. Armine previously worked at Stanford Main Operating Room ,specializing in neurosurgery, and cardiovascular surgery for 14 years. Currently, her practice focuses in the neurosurgical care of patients with brain and spine tumors, arteriovenous malformation, aneurysms, and neurogenetic disorders needing either conventional surgery and/ or Cyberknife radiosurgery procedure. She has co-published several articles regarding Cyberknife treatment for patients with brain and spine tumors.

  • Nicholas Telischak

    Nicholas Telischak

    Clinical Assistant Professor, Radiology

    Bio Dr. Nick Telischak is a neurointerventional surgeon (neurointerventional radiologist) who specializes in the diagnosis and treatment of stroke, brain aneurysms, brain arteriovenous malformations, brain and spinal dural arteriovenous fistulae, carotid artery stenosis, vertebral body compression fractures, spinal metastases, axial back pain, and congenital vascular malformations. Dr. Telischak treats all of these conditions using minimally-invasive, image-guided procedures and state-of-the-art technology.

  • Suzanne Tharin

    Suzanne Tharin

    Assistant Professor of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly Interests The long-term goal of my research is the repair of damaged corticospinal circuitry. Therapeutic regeneration strategies will be informed by an understanding both of corticospinal motor neuron (CSMN) development and of events occurring in CSMN in the setting of spinal cord injury. MicroRNAs are small, non-coding RNAs that regulate the expression of ?suites? of genes. The work in my lab seeks to identify microRNA controls over CSMN development and over the CSMN response to spinal cord injury.

  • Reena Thomas

    Reena Thomas

    Clinical Associate Professor, Neurology & Neurological Sciences

    Bio Dr. Reena Thomas received her medical degree from Georgetown University School of Medicine in Washington, DC and her PhD from the City of Hope Graduate School in Duarte, California. She completed her training as a resident in Neurology as well as her fellowship training in Neuro-Oncology at Stanford University Hospital. Her research background and interests are focused on immune based cancer therapies and chemokine signaling in glioblastoma brain tumors. She has also been involved in advanced imaging studies of glioblastoma. She is the Director of the Adult Neuro Oncology Fellowship at Stanford.

  • Zachary David Threlkeld

    Zachary David Threlkeld

    Clinical Assistant Professor, Neurology & Neurological Sciences

    Bio Dr. Threlkeld cares for critically ill patients with acute neurologic illness, including traumatic brain injury, stroke, intracerebral hemorrhage, and epilepsy. He completed his residency training in neurology at the University of California, San Francisco, and joined the Stanford Neurocritical Care program after completing fellowship training in neurocritical care at Massachusetts General Hospital and Brigham and Women?s Hospital in Boston. He has a particular clinical and research interest in traumatic brain injury. His research uses advanced imaging modalities like functional magnetic resonance imaging (fMRI) to better understand disorders of consciousness.

  • Anand Veeravagu

    Anand Veeravagu

    Assistant Professor of Neurosurgery and, by courtesy, of Orthopaedic Surgery at the Stanford University Medical Center

    Current Research and Scholarly Interests The focus of my laboratory is to utilize precision medicine techniques to improve the diagnosis and treatment of neurologic conditions. From traumatic brain injury to spinal scoliosis, the ability to capture detailed data regarding clinical symptoms and treatment outcomes has empowered us to do better for patients. Utilize data to do better for patients, that?s what we do.

    Stanford Neurosurgical Ai and Machine Learning Lab
    http://med.stanford.edu/neurosurgery/research/AILab.html

  • Hannes Vogel MD

    Hannes Vogel MD

    Professor of Pathology and of Pediatrics (Pediatric Genetics) and, by courtesy, of Neurosurgery and of Comparative Medicine at the Stanford University Medical Center

    Current Research and Scholarly Interests My research interests include nerve and muscle pathology, mitochondrial diseases, pediatric neurooncology, and transgenic mouse pathology.

  • Xinnan Wang

    Xinnan Wang

    Associate Professor of Neurosurgery

    Current Research and Scholarly Interests Mechanisms underlying mitochondrial dynamics and function, and their implications in neurological disorders.

  • Thomas J. Wilson

    Thomas J. Wilson

    Clinical Assistant Professor, Neurosurgery

    Bio Dr. Thomas J. Wilson was born in Omaha, Nebraska. He attended the University of Nebraska College of Medicine, earning his MD with highest distinction. While a medical student, he was awarded a Howard Hughes Medical Institute Research Training Fellowship and spent a year in the lab of Dr. Rakesh Singh at the University of Nebraska. He was also elected to the prestigious Alpha Omega Alpha Honor Medical Society. He completed his residency training in neurological surgery at the University of Michigan and was mentored by Dr. Lynda Yang and Dr. John McGillicuddy in peripheral nerve surgery. Following his residency, he completed a fellowship in peripheral nerve surgery at the Mayo Clinic in Rochester, Minnesota, working with Dr. Robert Spinner. He is now Clinical Assistant Professor and Co-Director of the Center for Peripheral Nerve Surgery at Stanford University. He is also currently endeavoring to earn a Master of Public Health (MPH) degree from the Bloomberg School of Public Health at Johns Hopkins University. His research interests include peripheral nerve outcomes research using large data sets and multi-institutional registries, clinical trials advancing options for patients with peripheral nerve pathologies, and translational research focused on deriving methods for data-driven intraoperative decision-making using intraoperative electrophysiology, advanced imaging techniques, and genetic expression information. His wife, Dr. Monique Wilson, is a practicing dermatologist in the Bay Area.

  • Albert J. Wong, M.D.

    Albert J. Wong, M.D.

    Professor of Neurosurgery

    Current Research and Scholarly Interests Our goal is to define targets for cancer therapeutics by identifying alterations in signal transduction proteins. We first identified a naturally occurring mutant EGF receptor (EGFRvIII) and then delineated its unique signal transduction pathway. This work led to the identification of Gab1 followed by the discovery that JNK is constitutively active in tumors. We intiated using altered proteins as the target for vaccination, where an EGFRvIII based vaccine appears to be highly effective.

  • Heng Zhao

    Heng Zhao

    Professor (Research) of Neurosurgery

    Current Research and Scholarly Interests My lab is focused on developing novel therapeutic methods against stroke using rodent models. We study protective effect of postconditioning, preconditioning and mild hypothermia. The rationale for studying three means of neuroprotection is that we may discover mechanisms that these treatments have in common. Conversely, if they have differing mechanisms, we will be able to offer more than one treatment for stroke and increase a patient’s chance for recovery.

  • J. Bradley Zuchero

    J. Bradley Zuchero

    Assistant Professor of Neurosurgery

    Current Research and Scholarly Interests Glia are a frontier of neuroscience, and overwhelming evidence from the last decade shows that they are essential regulators of all aspects of the nervous system. The Zuchero Lab aims to uncover how glial cells regulate neural development and how their dysfunction contributes to diseases like multiple sclerosis (MS) and in injuries like stroke.

    Although glia represent more than half of the cells in the human brain, fundamental questions remain to be answered. How do glia develop their highly specialized morphologies and interact with neurons to powerfully control form and function of the nervous system? How is this disrupted in neurodegenerative diseases and after injury? By bringing cutting-edge cell biology techniques to the study of glia, we aim to uncover how glia help sculpt and regulate the nervous system and test their potential as novel, untapped therapeutic targets for disease and injury.

    We are particularly interested in myelin, the insulating sheath around neuronal axons that is lost in diseases like MS. How do oligodendrocytes- the glial cell that produces myelin in the central nervous system- form and remodel myelin, and why do they fail to regenerate myelin in disease? Our current projects aim to use cell biology and neuroscience approaches to answer these fundamental questions. Ultimately we hope our work will lead to much-needed therapies to promote remyelination in patients.

  • Corinna Zygourakis

    Corinna Zygourakis

    Assistant Professor of Neurosurgery at the Stanford University Medical Center

    Current Research and Scholarly Interests My goal is to translate research into real-world action and decision-making so that my work can impact patients and the institutions in which they receive care. With a research focus on healthcare cost and quality of care, I approach neurosurgery in a unique way?one that applies business operations, economics, and healthcare delivery principles to our field. I have pursued formal LEAN business training, and believe in the importance of working together with other departments and administrators, as well as physicians and surgeons on the hospital and national level, to effect change. During my residency, I developed and led a multi-departmental prospective study at UCSF called OR SCORE (OR Surgical Cost Reduction Project) that brought together surgeons from the neurosurgery, orthopedics and ENT departments with nurses and administrators. OR SCORE successfully reduced surgical supply costs by nearly one million dollars in its first year by providing >60 surgeons with price transparency scorecards. This work led to a first-author publication in JAMA Surgery, but more importantly, set the foundation for further quality improvement and cost reduction efforts across the UCSF hospital system.

    A volunteer neurosurgical mission trip to Guadalajara, Mexico, where limited resources create an OR environment that is strikingly more frugal than the U.S., inspired me to lead another project aimed at quantifying and reducing operating room waste at UCSF. I have also conducted research looking at the safety and outcomes of overlapping surgery, as well as several projects to define the factors underlying variation in cost for neurosurgical care using UCSF?s hospital data and national databases like the National Inpatient Sample, Vizient (formerly known as University Health Consortium), and Medicare.

    As a clinical fellow at Johns Hopkins, I continued and expanded these research efforts. I designed and implemented an Enhanced Recovery after Surgery (ERAS) protocol at the Johns Hopkins Bayview hospital. This protocol standardized care for our spine patients, emphasizing pre-operative rehabilitation, psychiatric and nutritional assessments, and smoking cessation, as well as intra- and post-operative multi-modal pain therapy, early mobilization, and standardized antibiotic and bowel regimens. I also collaborated with engineers in the Johns Hopkins Carnegie Center for Surgical Innovation to develop better algorithms for intra-operative CT imaging, and provided assistance with operations to a basic science study looking at the role of cerebrospinal fluid drainage and duraplasty in a porcine model of spinal cord injury.

    At Stanford, I am building a research group focused on: (1) perfecting paradigms for delivery of high-end technology in spinal care, including robotics and navigation, (2) implementing cost and quality strategies in large healthcare systems, and (3) computational analysis of big-data to effect real-time risk stratification and decision making in spine surgery. I'm excited to collaborate with my peers across surgical and medical departments, as well as business and engineering colleagues.

Footer Links:

Stanford Medicine Resources: