Bio

Bio


Department: Neuroimaging and Neurointervention

Clinical Focus


  • Radiology
  • Neuroradiology

Academic Appointments


  • Clinical Instructor, Radiology

Boards, Advisory Committees, Professional Organizations


  • Original Curator, Core Literature Resources in Neuroimaging Subcommittee, World Federation of Neuroradiological Societies (2020 - Present)

Professional Education


  • Fellowship: Stanford University Neuroradiology Fellowship (2020) CA
  • Board Certification, American Board of Radiology, Diagnostic Radiology (2019)

Publications

All Publications


  • Imaging Anatomy of the Vertebral Canal for Trans-Sacral Hiatus Puncture of the Lumbar Cistern. Clinical anatomy (New York, N.Y.) Trinh, A., Hashmi, S. S., Massoud, T. F. 2020

    Abstract

    A standard lumbar puncture may be impossible for many anatomic or technical reasons. Previous accounts of caudal epidural anesthesia and other procedures via the sacral hiatus prompted us to test if image-guided percutaneous trans-sacral hiatus access to the lumbosacral subarachnoid cistern would be anatomically feasible. To study vertebral canal morphometry and curvature, we analyzed midsagittal CT-myelogram images of 40 normal subjects and digitally measured sacral curvatures between S1 to S5 and S2 to S4 using two methods whereby a lower angle signifies a straighter sacrum. We measured midsagittal vertebral canal area, hiatus width, dural sac termination levels, and distance from sacral hiatus to the dural sac tip (needle distance). Subjects were F:M=25:15, with a mean age of 44.9years. The two S1-S5 full sacral curvature mean angles were 57.3 and 60.4. Almost all sacral hiatuses were at S4, and dural sac terminations were at S1-S2. The mean S2-S4 sacral curvature was 25.1, and the mean needle distance was 57.7mm. Using two-way ANOVA, there were significant sex differences for needle distances (p=.001), and full and limited sacral curvatures (p=.02, and p=.046, respectively). There were no significant linear regression correlations between age and sacral curvature, needle distance, canal area, or hiatus width. Therefore, despite a frequently prominent full sacral curvature, the combination of S1-S2 dural sac termination plus a relatively straight trajectory of the lower vertebral canal between S2 and S4 support the theoretical feasibility of percutaneous trans-sacral hiatus and vertebral canal access to the lumbosacral cistern using a standard spinal needle. This article is protected by copyright. All rights reserved.

    View details for DOI 10.1002/ca.23612

    View details for PubMedID 32323367

  • Interobserver Agreement for the CT Severity Grading Scales for Acute Traumatic Brain Injury (TBI). Journal of neurotrauma Creeden, S., Ding, V., Parker, J. J., Jiang, B., Li, Y., Lanzman, B., Trinh, A., Khalaf, A., Wolman, D., Halpern, C., Boothroyd, D., Wintermark, M. 2020

    Abstract

    PURPOSE: To determine the interobserver variability among providers of different specialties and levels of experience across five established computed tomography (CT) scoring systems for acute traumatic brain injury (TBI).MATERIALS & METHODS: One hundred cases were selected at random from a retrospective population of adult patients transported to our emergency department and subjected to a non-contrast head CT due to suspicion for TBI. Eight neuroradiologists and neurosurgeons in trainee (residents and fellows) and attending roles independently scored each non-contrast head CT scan on the Marshall, Rotterdam, Helsinki, Stockholm and NeuroImaging Radiological Interpretation System (NIRIS) head CT scales. Interobserver variability of scale scores - overall and by specialty and level of training - was quantified using the intraclass correlation coefficient (ICC), and agreement with respect to National Institutes of Health Common Data Elements (NIH CDEs) was assessed using Cohen's kappa.RESULTS: All CT severity scoring systems showed high interobserver agreement as evidenced by high ICCs, ranging from 0.75 - 0.89. For all scoring systems, neuroradiologists (ICC range from 0.81 - 0.94) tended to have higher interobserver agreement than neurosurgeons (ICC range from 0.63 - 0.76). For all scoring systems, attendings (ICC range from 0.76 - 0.89) had similar interobserver agreement to trainees (ICC range from 0.73 - 0.89). Agreement with respect to NIH CDEs was high for ascertaining presence/absence of hemorrhage, skull fracture, and mass effect, with estimated kappa statistics of least 0.89.CONCLUSION: Acute TBI CT scoring systems demonstrate high interobserver agreement. These results provide scientific rigor for future use of these systems for the classification of acute TBI.

    View details for DOI 10.1089/neu.2019.6871

    View details for PubMedID 31996087

Footer Links:

Stanford Medicine Resources: