Professional Education

  • Doctor of Philosophy, University of Chicago (2017)

Research & Scholarship

Current Research and Scholarly Interests

My research aims to understand neural representations and brain networks that support learning and academic achievement across development to bridge the gaps between cognitive and developmental science, neuroscience, and education. I am interested in the interplay between multiple cognitive and affective systems, and neuroplasticity of these systems that give rise to individual differences in how children acquire knowledge and skills in domains important for academic and professional success.


All Publications

  • Faster learners transfer their knowledge better: Behavioral, mnemonic, and neural mechanisms of individual differences in children’s learning DEVELOPMENTAL COGNITIVE NEUROSCIENCE Chang, H., Rosenberg-Lee, M., Qin, S., Menon, V. 2019; 40: 1-14
  • Simple arithmetic: not so simple for highly math anxious individuals SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE Chang, H., Sprute, L., Maloney, E. A., Beilock, S. L., Berman, M. G. 2017; 12 (12): 1940–49
  • The math anxiety-math performance link and its relation to individual and environmental factors: a review of current behavioral and psychophysiological research CURRENT OPINION IN BEHAVIORAL SCIENCES Chang, H., Beilock, S. L. 2016; 10: 33–38
  • On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies JOURNAL OF EXPERIMENTAL CHILD PSYCHOLOGY Ramirez, G., Chang, H., Maloney, E. A., Levine, S. C., Beilock, S. L. 2016; 141: 83–100


    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers.

    View details for DOI 10.1016/j.jecp.2015.07.014

    View details for Web of Science ID 000364882100006

    View details for PubMedID 26342473

  • The Odd-Even Effect in Sudoku Puzzles: Effects of Working Memory, Aging, and Experience AMERICAN JOURNAL OF PSYCHOLOGY Chang, H., Gibson, J. M. 2011; 124 (3): 313–24


    The odd-even effect in numerical processing has been explained as the easier processing of even numbers compared with odd numbers. We investigated this effect in Sudoku puzzles, a reasoning problem that uses numbers but does not require arithmetic operations. Specifically, we asked whether the odd-even effect occurred with Sudoku puzzles and whether individual differences in working memory (WM), aging, and experience with Sudoku modulated this effect. We manipulated the presence of odd and even numbers in Sudoku puzzles, measured WM with the Wisconsin Card Sorting Test and backward digit span task, tested older and younger adults, and collected Sudoku experience frequency. Performance on Sudoku was more accurate for even puzzles than odd ones. Younger, experienced, and higher-WM participants were more accurate on Sudoku, but these individual difference variables did not interact with the odd-even effect. Odd numbers may impose more cognitive load than even numbers, but future research is needed to examine how age, experience, or WM may influence the odd-even effect.

    View details for DOI 10.5406/amerjpsyc.124.3.0313

    View details for Web of Science ID 000297864700006

    View details for PubMedID 21977693

  • Prefrontal and limbic dysregulation during emotional processing in bipolar disorder: a functional magnetic resonance imaging meta-analyses Brooks, J. O., Chang, H. S., Bearden, C. E., Glahn, D. C. WILEY-BLACKWELL. 2011: 32–33
  • Dysregulated Activation of Prefrontal and Limbic Regions in Emotional Processing in Bipolar Disorder: A Meta-Analysis Brooks, J. O., Chang, H., Bearden, C. E., Glahn, D. C. ELSEVIER SCIENCE INC. 2010: 135S
  • Metabolic Risks in Older Adults Receiving Second-Generation Antipsychotic Medication CURRENT PSYCHIATRY REPORTS Brooks, J. O., Chang, H., Krasnykh, O. 2009; 11 (1): 33–40


    Metabolic syndrome is prevalent in older adults and increases the risk of cardiovascular disease. Second-generation antipsychotics (aripiprazole, clozapine, olanzapine, quetiapine, risperidone, and ziprasidone) increase the risk of metabolic syndrome and present many challenges for psychiatrists. In this article, we review the relationships between second-generation antipsychotics and metabolic syndrome with a focus on older adults. Because few studies focus exclusively on older adults, we augment this review with relevant findings from younger adults. The differential risk factors of each medication are reviewed, as are recent findings in monitoring and treating metabolic syndrome. Olanzapine and clozapine are more strongly associated with metabolic risks, whereas aripiprazole and ziprasidone are less associated. Although lifestyle modifications can help to reduce some aspects of metabolic syndrome, lifestyle modifications in conjunction with metformin therapy appear to be most effective.

    View details for DOI 10.1007/s11920-009-0006-0

    View details for Web of Science ID 000207901500010

    View details for PubMedID 19187706

Latest information on COVID-19