Bio

Publications

Journal Articles


  • Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY Chen, R., Giliani, S., Lanzi, G., Mias, G. I., Lonardi, S., Dobbs, K., Manis, J., Im, H., Gallagher, J. E., Phanstiel, D. H., Euskirchen, G., Lacroute, P., Bettinger, K., Moratto, D., Weinacht, K., Montin, D., Gallo, E., Mangili, G., Porta, F., Notarangelo, L. D., Pedretti, S., Al-Herz, W., Alfahdli, W., Comeau, A. M., Traister, R. S., Pai, S., Carella, G., Facchetti, F., Nadeau, K. C., Snyder, M., Notarangelo, L. D. 2013; 132 (3): 656-?

    Abstract

    Combined immunodeficiency with multiple intestinal atresias (CID-MIA) is a rare hereditary disease characterized by intestinal obstructions and profound immune defects.We sought to determine the underlying genetic causes of CID-MIA by analyzing the exomic sequences of 5 patients and their healthy direct relatives from 5 unrelated families.We performed whole-exome sequencing on 5 patients with CID-MIA and 10 healthy direct family members belonging to 5 unrelated families with CID-MIA. We also performed targeted Sanger sequencing for the candidate gene tetratricopeptide repeat domain 7A (TTC7A) on 3 additional patients with CID-MIA.Through analysis and comparison of the exomic sequence of the subjects from these 5 families, we identified biallelic damaging mutations in the TTC7A gene, for a total of 7 distinct mutations. Targeted TTC7A gene sequencing in 3 additional unrelated patients with CID-MIA revealed biallelic deleterious mutations in 2 of them, as well as an aberrant splice product in the third patient. Staining of normal thymus showed that the TTC7A protein is expressed in thymic epithelial cells, as well as in thymocytes. Moreover, severe lymphoid depletion was observed in the thymus and peripheral lymphoid tissues from 2 patients with CID-MIA.We identified deleterious mutations of the TTC7A gene in 8 unrelated patients with CID-MIA and demonstrated that the TTC7A protein is expressed in the thymus. Our results strongly suggest that TTC7A gene defects cause CID-MIA.

    View details for DOI 10.1016/j.jaci.2013.06.013

    View details for Web of Science ID 000323612000018

    View details for PubMedID 23830146

  • Establishment and regulation of chromatin domains: Mechanistic insights from studies of hemoglobin synthesis PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 81 Bresnick, E. H., Johnson, K. D., Kim, S., Im, H. 2006; 81: 435-471
  • Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Im, H., Grass, J. A., Johnson, K. D., Kim, S. I., Boyer, M. E., Imbalzano, A. N., Bieker, J. J., Bresnick, E. H. 2005; 102 (47): 17065-17070

    Abstract

    Cis elements that mediate transcription factor binding are abundant within genomes, but the rules governing occupancy of such motifs in chromatin are not understood. The transcription factor GATA-1 that regulates red blood cell development binds with high affinity to GATA motifs, and initial studies suggest that these motifs are often unavailable for occupancy in chromatin. Whereas GATA-2 regulates the differentiation of all blood cell lineages via GATA motif binding, the specificity of GATA-2 chromatin occupancy has not been studied. We found that conditionally active GATA-1 (ER-GATA-1) and GATA-2 occupy only a small subset of the conserved GATA motifs within the murine beta-globin locus. Kinetic analyses in GATA-1-null cells indicated that ER-GATA-1 preferentially occupied GATA motifs at the locus control region (LCR), in which chromatin accessibility is largely GATA-1-independent. Subsequently, ER-GATA-1 increased promoter accessibility and occupied the betamajor promoter. ER-GATA-1 increased erythroid Krüppel-like factor and SWI/SNF chromatin remodeling complex occupancy at restricted LCR sites. These studies revealed three phases of beta-globin locus activation: GATA-1-independent establishment of specific chromatin structure features, GATA-1-dependent LCR complex assembly, and GATA-1-dependent promoter complex assembly. The differential utilization of dispersed GATA motifs therefore establishes spatial/temporal regulation and underlies the multistep activation mechanism.

    View details for DOI 10.1073/pnas.0506164102

    View details for Web of Science ID 000233463200030

    View details for PubMedID 16286657

  • Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation. Methods in molecular biology (Clifton, N.J.) Im, H., Grass, J. A., Johnson, K. D., Boyer, M. E., Wu, J., Bresnick, E. H. 2004; 284: 129-146

    Abstract

    Elucidating mechanisms controlling nuclear processes requires an understanding of the nucleoprotein structure of genes at endogenous chromosomal loci. Traditional approaches to measuring protein-DNA interactions in vitro have often failed to provide insights into physiological mechanisms. Given that most transcription factors interact with simple DNA sequence motifs, which are abundantly distributed throughout a genome, it is essential to pinpoint the small subset of sites bound by factors in vivo. Signaling mechanisms induce the assembly and modulation of complex patterns of histone acetylation, methylation, phosphorylation, and ubiquitination, which are crucial determinants of chromatin accessibility. These seemingly complex issues can be directly addressed by a powerful methodology termed the chromatin immunoprecipitation (ChIP) assay. ChIP analysis involves covalently trapping endogenous proteins at chromatin sites, thereby yielding snapshots of protein-DNA interactions and histone modifications within living cells. The chromatin is sonicated to generate small fragments, and an immunoprecipitation is conducted with an antibody against the desired factor or histone modification. Crosslinks are reversed, and polymerase chain reaction (PCR) is used to assess whether DNA sequences are recovered immune-specifically. Chromatin-domain scanning coupled with quantitative analysis is a powerful means of dissecting mechanisms by which signaling pathways target genes within a complex genome.

    View details for PubMedID 15173613

  • Highly restricted localization of RNA polymerase II within a locus control region of a tissue-specific chromatin domain MOLECULAR AND CELLULAR BIOLOGY Johnson, K. D., Grass, J. A., PARK, C., Im, H., Choi, K., Bresnick, E. H. 2003; 23 (18): 6484-6493

    Abstract

    RNA polymerase II (Pol II) can associate with regulatory elements far from promoters. For the murine beta-globin locus, Pol II binds the beta-globin locus control region (LCR) far upstream of the beta-globin promoters, independent of recruitment to and activation of the betamajor promoter. We describe here an analysis of where Pol II resides within the LCR, how it is recruited to the LCR, and the functional consequences of recruitment. High-resolution analysis of the distribution of Pol II revealed that Pol II binding within the LCR is restricted to the hypersensitive sites. Blocking elongation eliminated the synthesis of genic and extragenic transcripts and eliminated Pol II from the betamajor open reading frame. However, the elongation blockade did not redistribute Pol II at the hypersensitive sites, suggesting that Pol II is recruited to these sites. The distribution of Pol II did not strictly correlate with the distributions of histone acetylation and methylation. As Pol II associates with histone-modifying enzymes, Pol II tracking might be critical for establishing and maintaining broad histone modification patterns. However, blocking elongation did not disrupt the histone modification pattern of the beta-globin locus, indicating that Pol II tracking is not required to maintain the pattern.

    View details for DOI 10.1128/MCB.23.18.6484-6493.2003

    View details for Web of Science ID 000185103900013

    View details for PubMedID 12944475

  • Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain JOURNAL OF BIOLOGICAL CHEMISTRY Im, H., PARK, C., Feng, Q., Johnson, K. D., Kiekhaefer, C. M., Choi, K., Zhang, Y., Bresnick, E. H. 2003; 278 (20): 18346-18352

    Abstract

    Post-translational modifications of individual lysine residues of core histones can exert unique functional consequences. For example, methylation of histone H3 at lysine 79 (H3-meK79) has been implicated recently in gene silencing in Saccharomyces cerevisiae. However, the distribution and function of H3-meK79 in mammalian chromatin are not known. We found that H3-meK79 has a variable distribution within the murine beta-globin locus in adult erythroid cells, being preferentially enriched at the active betamajor gene. By contrast, acetylated H3 and H4 and H3 methylated at lysine 4 were enriched both at betamajor and at the upstream locus control region. H3-meK79 was also enriched at the active cad gene, whereas the transcriptionally inactive loci necdin and MyoD1 contained very little H3-meK79. As the pattern of H3-meK79 at the beta-globin locus differed between adult and embryonic erythroid cells, establishment and/or maintenance of H3-meK79 was developmentally dynamic. Genetic complementation analysis in null cells lacking the erythroid and megakaryocyte-specific transcription factor p45/NF-E2 showed that p45/NF-E2 preferentially establishes H3-meK79 at the betamajor promoter. These results support a model in which H3-meK79 is strongly enriched in mammalian chromatin at active genes but not uniformly throughout active chromatin domains. As H3-meK79 is highly regulated at the beta-globin locus, we propose that the murine ortholog of Disruptor of Telomeric Silencing-1-like (mDOT1L) methyltransferase, which synthesizes H3-meK79, regulates beta-globin transcription.

    View details for DOI 10.1074/jbc.M300890200

    View details for Web of Science ID 000182838300099

    View details for PubMedID 12604594

  • Histone deacetylase-dependent establishment and maintenance of broad low-level histone acetylation within a tissue-specific chromatin domain BIOCHEMISTRY Im, H., Grass, J. A., Christensen, H. M., Perkins, A., Bresnick, E. H. 2002; 41 (51): 15152-15160

    Abstract

    The murine beta-globin locus in adult erythroid cells is characterized by a broad pattern of erythroid-specific histone acetylation. The embryonic beta-globin genes Ey and betaH1 are located in a approximately 30 kb central subdomain characterized by low-level histone acetylation, while the fetal/adult genes betamajor and betaminor and the upstream locus control region reside in hyperacetylated chromatin. Histone deacetylase (HDAC) inhibitors induce H4 acetylation at the Ey promoter [Forsberg, E. C., Downs, K. M., Christensen, H. M., Im, H., Nuzzi, P. A., and Bresnick, E. H. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 14494-14499], indicating that HDACs maintain low-level H4 acetylation at this site. Since little is known about the establishment of broad histone modification patterns, we asked whether this mechanism applies only to the promoter or to the entire subdomain. We show that the HDAC inhibitor trichostatin A induces H4 hyperacetylation at multiple sites within the subdomain in erythroid cells. The hematopoietic factors p45/NF-E2, GATA-1, and erythroid kruppel-like factor (EKLF), which function through cis elements of the beta-globin locus, were not required for induction of H4 hyperacetylation. Analysis of chromatin structure within the subdomain revealed low accessibility to restriction endonucleases and nearly complete CpG dinucleotide methylation. Induction of H4 hyperacetylation did not restore hallmark features of transcriptionally active chromatin. We propose that an HDAC-dependent surveillance mechanism counteracts constitutive histone acetyltransferase (HAT) access, thereby maintaining low-level H4 acetylation throughout the subdomain.

    View details for DOI 10.1021/bi026786q

    View details for Web of Science ID 000180015100007

    View details for PubMedID 12484752

  • Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Forsberg, E. C., Downs, K. M., Christensen, H. M., Im, H., Nuzzi, P. A., Bresnick, E. H. 2000; 97 (26): 14494-14499

    Abstract

    We have defined the histone acetylation pattern of the endogenous murine beta-globin domain, which contains the erythroidspecific beta-globin genes. The beta-globin locus control region (LCR) and transcriptionally active promoters were enriched in acetylated histones in fetal liver relative to fetal brain, whereas the inactive promoters were hypoacetylated. In contrast, the LCR and both active and inactive promoters were hyperacetylated in yolk sac. Hypersensitive site two of the LCR was also hyperacetylated in murine embryonic stem cells, whereas beta-globin promoters were hypoacetylated. Thus, the acetylation pattern varied at different developmental stages. Histone deacetylase inhibition selectively increased acetylation at a hypoacetylated promoter in fetal liver, suggesting that active deacetylation contributes to silencing of promoters. We propose that dynamic histone acetylation and deacetylation play an important role in the developmental control of beta-globin gene expression.

    View details for Web of Science ID 000165993700092

    View details for PubMedID 11121052

Stanford Medicine Resources: