Honors & Awards

  • Dean's Fellowship, Stanford School of Medicine
  • NRSA F31 Fellowship, National Institute on Drug Abuse (NIDA)

Professional Education

  • Doctor of Philosophy, University of Kentucky (2013)
  • Bachelor of Science, Tulane University of Louisiana (2007)

Research & Scholarship

Lab Affiliations


Journal Articles

  • Constitutive mu-Opioid Receptor Activity Leads to Long-Term Endogenous Analgesia and Dependence SCIENCE Corder, G., Doolen, S., Donahue, R. R., Winter, M. K., Jutras, B. L., He, Y., Hu, X., Wieskopf, J. S., Mogil, J. S., Storm, D. R., Wang, Z. J., McCarson, K. E., Taylor, B. K. 2013; 341 (6152): 1394-1399


    Opioid receptor antagonists increase hyperalgesia in humans and animals, which indicates that endogenous activation of opioid receptors provides relief from acute pain; however, the mechanisms of long-term opioid inhibition of pathological pain have remained elusive. We found that tissue injury produced μ-opioid receptor (MOR) constitutive activity (MOR(CA)) that repressed spinal nociceptive signaling for months. Pharmacological blockade during the posthyperalgesia state with MOR inverse agonists reinstated central pain sensitization and precipitated hallmarks of opioid withdrawal (including adenosine 3',5'-monophosphate overshoot and hyperalgesia) that required N-methyl-D-aspartate receptor activation of adenylyl cyclase type 1. Thus, MOR(CA) initiates both analgesic signaling and a compensatory opponent process that generates endogenous opioid dependence. Tonic MOR(CA) suppression of withdrawal hyperalgesia may prevent the transition from acute to chronic pain.

    View details for DOI 10.1126/science.1239403

    View details for Web of Science ID 000324597200047

    View details for PubMedID 24052307

  • Tonic inhibition of chronic pain by neuropeptide Y PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA Solway, B., Bose, S. C., Corder, G., Donahue, R. R., Taylor, B. K. 2011; 108 (17): 7224-7229


    Dramatically up-regulated in the dorsal horn of the mammalian spinal cord following inflammation or nerve injury, neuropeptide Y (NPY) is poised to regulate the transmission of sensory signals. We found that doxycycline-induced conditional in vivo (Npy(tet/tet)) knockdown of NPY produced rapid, reversible, and repeatable increases in the intensity and duration of tactile and thermal hypersensitivity. Remarkably, when allowed to resolve for several weeks, behavioral hypersensitivity could be dramatically reinstated with NPY knockdown or intrathecal administration of Y1 or Y2 receptor antagonists. In addition, Y2 antagonism increased dorsal horn expression of Fos and phosphorylated form of extracellular signal-related kinase. Taken together, these data establish spinal NPY receptor systems as an endogenous braking mechanism that exerts a tonic, long-lasting, broad-spectrum inhibitory control of spinal nociceptive transmission, thus impeding the transition from acute to chronic pain. NPY and its receptors appear to be part of a mechanism whereby mammals naturally recover from the hyperalgesia associated with inflammation or nerve injury.

    View details for DOI 10.1073/pnas.1017719108

    View details for Web of Science ID 000289888500100

    View details for PubMedID 21482764

  • A Novel Method to Quantify Histochemical Changes Throughout the Mediolateral Axis of the Substantia Gelatinosa After Spared Nerve Injury: Characterization with TRPV1 and Substance P JOURNAL OF PAIN Corder, G., Siegel, A., Intondi, A. B., Zhang, X., Zadina, J. E., Taylor, B. K. 2010; 11 (4): 388-398


    Nerve injury dramatically increases or decreases protein expression in the spinal cord dorsal horn. Whether the spatial distribution of these changes is restricted to the central innervation territories of injured nerves or could spread to adjacent territories in the dorsal horn is not understood. To address this question, we developed a simple computer software-assisted method to precisely distinguish and efficiently quantify immunohistochemical staining patterns across the mediolateral axis of the dorsal horn 2 weeks after transection of either the tibial and common peroneal nerves (thus sparing the sural branch, spared nerve injury, [SNI]), the tibial nerve, or the common peroneal and sural nerves. Using thiamine monophosphatase (TMP) histochemistry, we determined that central terminals of the tibial, common peroneal, sural, and posterior cutaneous nerves occupy the medial 35%, medial-central 20%, central-lateral 20%, and lateral 25% of the substantia gelatinosa, respectively. We then used these calculations to show that SNI reduced the expression of SP and TRPV1 immunoreactivity within the tibial and peroneal innervation territories in the L4 dorsal horn, without changing expression in the uninjured, sural sector. We conclude that SNI-induced loss of SP and TRPV1 in central terminals of dorsal horn is restricted to injured fibers. Our new method enables direct comparison of injured and uninjured terminals in the dorsal horn so as to better understand their relative contributions to mechanisms of chronic pain.A simple computer software-assisted algorithm was developed to precisely distinguish and efficiently quantify immunohistochemical staining patterns across the mediolateral axis of the dorsal horn after distal sciatic-branch transection. This method will facilitate a better understanding of the relative contribution of injured and uninjured terminals to mechanisms of chronic pain.

    View details for DOI 10.1016/j.jpain.2009.09.008

    View details for Web of Science ID 000276658700011

    View details for PubMedID 20350706

Stanford Medicine Resources: