Publications

All Publications


  • A Protocol for Rapid Post-mortem Cell Culture of Diffuse Intrinsic Pontine Glioma (DIPG) JOVE-JOURNAL OF VISUALIZED EXPERIMENTS Lin, G. L., Monje, M. 2017

    Abstract

    Diffuse Intrinsic Pontine Glioma (DIPG) is a childhood brainstem tumor that carries a universally fatal prognosis. Because surgical resection is not a viable treatment strategy and biopsy is not routinely performed, the availability of patient samples for research is limited. Consequently, efforts to study this disease have been challenged by a paucity of faithful disease models. To address this need, we describe here a protocol for the rapid processing of post-mortem autopsy tissue samples in order to generate durable patient-derived cell culture models that can be used in in vitro assays or in vivo orthotopic xenograft experiments. These models can be used to screen for potential drug targets and to study fundamental pathobiological processes within DIPG. This protocol can further be extended to analyze and isolate tumor and microenvironmental cells using Fluorescence-activated Cell Sorting (FACS), which enables subsequent analysis of gene expression, protein expression, or epigenetic modifications of DNA at the bulk cell or single cell level. Finally, this protocol can also be adapted to generate patient-derived cultures for other central nervous system tumors.

    View details for DOI 10.3791/55360

    View details for Web of Science ID 000397848300065

    View details for PubMedID 28362421

  • Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B., Barres, B. A., Woo, P. J., Vogel, H., Monje, M. 2014; 344 (6183): 1252304-?

    Abstract

    Myelination of the central nervous system requires the generation of functionally mature oligodendrocytes from oligodendrocyte precursor cells (OPCs). Electrically active neurons may influence OPC function and selectively instruct myelination of an active neural circuit. In this work, we use optogenetic stimulation of the premotor cortex in awake, behaving mice to demonstrate that neuronal activity elicits a mitogenic response of neural progenitor cells and OPCs, promotes oligodendrogenesis, and increases myelination within the deep layers of the premotor cortex and subcortical white matter. We further show that this neuronal activity-regulated oligodendrogenesis and myelination is associated with improved motor function of the corresponding limb. Oligodendrogenesis and myelination appear necessary for the observed functional improvement, as epigenetic blockade of oligodendrocyte differentiation and myelin changes prevents the activity-regulated behavioral improvement.

    View details for DOI 10.1126/science.1252304

    View details for PubMedID 24727982

    View details for PubMedCentralID PMC4096908