Bio

Professional Education


  • Master of Science, Universita Degli Studi Di Torino (2006)
  • Doctor of Philosophy, Washington University (2013)

Stanford Advisors


Publications

Journal Articles


  • Origin and Consequences of the Relationship between Protein Mean and Variance PLOS ONE Vallania, F. L., Sherman, M., Goodwin, Z., Mogno, I., Cohen, B. A., Mitra, R. D. 2014; 9 (7)

    Abstract

    Cell-to-cell variance in protein levels (noise) is a ubiquitous phenomenon that can increase fitness by generating phenotypic differences within clonal populations of cells. An important challenge is to identify the specific molecular events that control noise. This task is complicated by the strong dependence of a protein's cell-to-cell variance on its mean expression level through a power-law like relationship (σ2∝μ1.69). Here, we dissect the nature of this relationship using a stochastic model parameterized with experimentally measured values. This framework naturally recapitulates the power-law like relationship (σ2∝μ1.6) and accurately predicts protein variance across the yeast proteome (r2 = 0.935). Using this model we identified two distinct mechanisms by which protein variance can be increased. Variables that affect promoter activation, such as nucleosome positioning, increase protein variance by changing the exponent of the power-law relationship. In contrast, variables that affect processes downstream of promoter activation, such as mRNA and protein synthesis, increase protein variance in a mean-dependent manner following the power-law. We verified our findings experimentally using an inducible gene expression system in yeast. We conclude that the power-law-like relationship between noise and protein mean is due to the kinetics of promoter activation. Our results provide a framework for understanding how molecular processes shape stochastic variation across the genome.

    View details for DOI 10.1371/journal.pone.0102202

    View details for Web of Science ID 000339992600010

    View details for PubMedID 25062021

Stanford Medicine Resources: