Professional Education

  • Bachelor of Science, University of Rochester (2007)
  • Doctor of Philosophy, University of Pennsylvania (2013)

Stanford Advisors


Journal Articles

  • Method for high-resolution imaging of creatine in vivo using chemical exchange saturation transfer. Magnetic resonance in medicine Kogan, F., Haris, M., Singh, A., Cai, K., Debrosse, C., Nanga, R. P., Hariharan, H., Reddy, R. 2014; 71 (1): 164-172


    To develop a chemical exchange saturation transfer (CEST)-based technique to measure free creatine (Cr) and to validate the technique by measuring the distribution of Cr in muscle with high spatial resolution before and after exercise.Phantom studies were performed to determine contributions from other Cr kinase metabolites to the CEST effect from Cr (CrCEST). CEST, T2 , magnetization transfer ratio and (31) P magnetic resonance spectroscopy acquisitions of the lower leg were performed before and after plantar flexion exercise on a 7T whole-body magnetic resonance scanner on healthy volunteers.Phantom studies demonstrated that while Cr exhibited significant CEST effect there were no appreciable contributions from other metabolites. In healthy human subjects, following mild plantar flexion exercise, increases in the CEST effect from Cr were observed, which recovered exponentially back to baseline. This technique exhibited good spatial resolution and was able to differentiate differences in muscle utilization among subjects. The CEST effect from Cr results were compared with (31) P magnetic resonance spectroscopy results showing good agreement in the Cr and phosphocreatine recovery kinetics.Demonstrated a CEST-based technique to measure free Cr changes in in vivo muscle. The CEST effect from Cr imaging can spatially map changes in Cr concentration in muscle following mild exercise. This may serve as a tool for the diagnosis and treatment of various disorders affecting muscle. Magn Reson Med 71:164-172, 2014. © 2013 Wiley Periodicals, Inc.

    View details for DOI 10.1002/mrm.24641

    View details for PubMedID 23412909

  • A technique for in vivo mapping of myocardial creatine kinase metabolism. Nature medicine Haris, M., Singh, A., Cai, K., Kogan, F., McGarvey, J., Debrosse, C., Zsido, G. A., Witschey, W. R., Koomalsingh, K., Pilla, J. J., Chirinos, J. A., Ferrari, V. A., Gorman, J. H., Hariharan, H., Gorman, R. C., Reddy, R. 2014


    ATP derived from the conversion of phosphocreatine to creatine by creatine kinase provides an essential chemical energy source that governs myocardial contraction. Here, we demonstrate that the exchange of amine protons from creatine with protons in bulk water can be exploited to image creatine through chemical exchange saturation transfer (CrEST) in myocardial tissue. We show that CrEST provides about two orders of magnitude higher sensitivity compared to (1)H magnetic resonance spectroscopy. Results of CrEST studies from ex vivo myocardial tissue strongly correlate with results from (1)H and (31)P magnetic resonance spectroscopy and biochemical analysis. We demonstrate the feasibility of CrEST measurement in healthy and infarcted myocardium in animal models in vivo on a 3-T clinical scanner. As proof of principle, we show the conversion of phosphocreatine to creatine by spatiotemporal mapping of creatine changes in the exercised human calf muscle. We also discuss the potential utility of CrEST in studying myocardial disorders.

    View details for DOI 10.1038/nm.3436

    View details for PubMedID 24412924

  • Imaging of glutamate in the spinal cord using GluCEST NEUROIMAGE Kogan, F., Singh, A., Debrosse, C., Haris, M., Cai, K., Nanga, R. P., Elliott, M., Hariharan, H., Reddy, R. 2013; 77: 262-267


    Glutamate (Glu) is the most abundant excitatory neurotransmitter in the brain and spinal cord. The concentration of Glu is altered in a range of neurologic disorders that affect the spinal cord including multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and spinal cord injury. Currently available magnetic resonance spectroscopy (MRS) methods for measuring Glu are limited to low spatial resolution, which makes it difficult to measure differences in gray and white matter glutamate. Recently, it has been shown that Glu exhibits a concentration dependent chemical exchange saturation transfer (CEST) effect between its amine (-NH2) group protons and bulk water protons (GluCEST). Here, we demonstrate the feasibility of imaging glutamate in the spinal cord at 7T using the GluCEST technique. Results from healthy human volunteers (N=7) showed a significantly higher (p<0.001) GluCESTasym from gray matter (6.6±0.3%) compared to white matter (4.8±0.4%). Potential overlap of CEST signals from other spinal cord metabolites with the observed GluCESTasym is discussed. This noninvasive approach potentially opens the way to image Glu in vivo in the spinal cord and to monitor its alteration in many disease conditions.

    View details for DOI 10.1016/j.neuroimage.2013.03.072

    View details for Web of Science ID 000320073900026

    View details for PubMedID 23583425

  • Chemical Exchange Saturation Transfer (CEST) Imaging: Description of Technique and Potential Clinical Applications. Current radiology reports Kogan, F., Hariharan, H., Reddy, R. 2013; 1 (2): 102-114


    Chemical exchange saturation transfer (CEST) is a magnetic resonance imaging (MRI) contrast enhancement technique that enables indirect detection of metabolites with exchangeable protons. Endogenous metabolites with exchangeable protons including many endogenous proteins with amide protons, glycosaminoglycans (GAG), glycogen, myo-inositol (MI), glutamate (Glu), creatine (Cr) and several others have been identified as potential in vivo endogenous CEST agents. These endogenous CEST agents can be exploited as non-invasive and non-ionizing biomarkers of disease diagnosis and treatment monitoring. This review focuses on the recent technical developments in endogenous in vivo CEST MRI from various metabolites as well as their potential clinical applications. The basic underlying principles of CEST, its potential limitations and new techniques to mitigate them are discussed.

    View details for DOI 10.1007/s40134-013-0010-3

    View details for PubMedID 23730540

  • Magnetic resonance imaging of glutamate NATURE MEDICINE Cai, K., Haris, M., Singh, A., Kogan, F., Greenberg, J. H., Hariharan, H., Detre, J. A., Reddy, R. 2012; 18 (2): 302-306


    Glutamate, a major neurotransmitter in the brain, shows a pH- and concentration-dependent chemical exchange saturation transfer effect (GluCEST) between its amine group and bulk water, with potential for in vivo imaging by nuclear magnetic resonance. GluCEST asymmetry is observed ∼3 p.p.m. downfield from bulk water. Middle cerebral artery occlusion in the rat brain resulted in an ∼100% elevation of GluCEST in the ipsilateral side compared with the contralateral side, predominantly owing to pH changes. In a rat brain tumor model with blood-brain barrier disruption, intravenous glutamate injection resulted in a clear elevation of GluCEST and a similar increase in the proton magnetic resonance spectroscopy signal of glutamate. GluCEST maps from healthy human brain were also obtained. These results demonstrate the feasibility of using GluCEST for mapping relative changes in glutamate concentration, as well as pH, in vivo. Contributions from other brain metabolites to the GluCEST effect are also discussed.

    View details for Web of Science ID 000300140300047

    View details for PubMedID 22270722

Stanford Medicine Resources: