Academic Appointments

  • Instructor, Otolaryngology - Head & Neck Surgery Divisions

Professional Education

  • Doctor of Philosophy, University of Kansas, Molecular, Cellular and Developmental Biology (MCDB) (2012)
  • Bachelor of Science, Universidad Agraria La Molina, Biotechnology (2004)


All Publications

  • Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea JOURNAL OF CLINICAL INVESTIGATION Atkinson, P. J., Dong, Y., Gu, S., Liu, W., Najarro, E., Udagawa, T., Cheng, A. G. 2018; 128 (4): 1641–56


    During development, Sox2 is indispensable for cell division and differentiation, yet its roles in regenerating tissues are less clear. Here, we used combinations of transgenic mouse models to reveal that Sox2 haploinsufficiency (Sox2haplo) increases rather than impairs cochlear regeneration in vivo. Sox2haplo cochleae had delayed terminal mitosis and ectopic sensory cells, yet normal auditory function. Sox2haplo amplified and expanded domains of damage-induced Atoh1+ transitional cell formation in neonatal cochlea. Wnt activation via β-catenin stabilization (β-cateninGOF) alone failed to induce proliferation or transitional cell formation. By contrast, β-cateninGOF caused proliferation when either Sox2haplo or damage was present, and transitional cell formation when both were present in neonatal, but not mature, cochlea. Mechanistically, Sox2haplo or damaged neonatal cochleae showed lower levels of Sox2 and Hes5, but not of Wnt target genes. Together, our study unveils an interplay between Sox2 and damage in directing tissue regeneration and Wnt responsiveness and thus provides a foundation for potential combinatorial therapies aimed at stimulating mammalian cochlear regeneration to reverse hearing loss in humans.

    View details for PubMedID 29553487

    View details for PubMedCentralID PMC5873847

  • Sensory hair cell development and regeneration: similarities and differences DEVELOPMENT Atkinson, P. J., Najarro, E. H., Sayyid, Z. N., Cheng, A. G. 2015; 142 (9): 1561-1571


    Sensory hair cells are mechanoreceptors of the auditory and vestibular systems and are crucial for hearing and balance. In adult mammals, auditory hair cells are unable to regenerate, and damage to these cells results in permanent hearing loss. By contrast, hair cells in the chick cochlea and the zebrafish lateral line are able to regenerate, prompting studies into the signaling pathways, morphogen gradients and transcription factors that regulate hair cell development and regeneration in various species. Here, we review these findings and discuss how various signaling pathways and factors function to modulate sensory hair cell development and regeneration. By comparing and contrasting development and regeneration, we also highlight the utility and limitations of using defined developmental cues to drive mammalian hair cell regeneration.

    View details for DOI 10.1242/dev.114926

    View details for Web of Science ID 000353591300002

    View details for PubMedID 25922522

    View details for PubMedCentralID PMC4419275

  • C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons. Developmental biology Huarcaya Najarro, E., Ackley, B. D. 2013; 377 (1): 224–35


    Directed axonal growth is essential to establish neuronal networks. During the early development of the VD neurons, an anterior neurite that will become the VD axon extends along the anteroposterior (A/P) axis in the ventral nerve cord (VNC) in Caenorhabditis elegans. Little is known about the cellular and molecular mechanisms that are important for correct neurite growth in the VNC. In fmi-1/flamingo mutant animals, we observed that some postembryonically born VD neurons had a posterior neurite instead of a normal anterior neurite, which caused aberrant VD commissure patterning along the A/P axis. In addition, VD anterior neurites had underextension defects in the VNC in fmi-1 animals, whereas VD commissure growth along the dorsoventral (D/V) axis occurred normally in these animals, suggesting that fmi-1 is important for neurite growth along the A/P axis but not the D/V axis. We also uncovered unknown details of the early development of the VD neurons, indicating that the neurite defects arose during their early development. Interestingly, though fmi-1 is present at this time in the VNC, we did not observe FMI-1 in the VD neurons themselves, suggesting that fmi-1 might be working in a cell non-autonomous fashion. Furthermore, fmi-1 appears to be working in a novel pathway, independently from the planar cell polarity pathway and in parallel to lin-17/frizzled and dsh-1/dishevelled, to determine the direction of neurite growth. Our findings indicate that redundant developmental pathways regulate neurite growth in the VNC in C. elegans.

    View details for DOI 10.1016/j.ydbio.2013.01.014

    View details for PubMedID 23376536

    View details for PubMedCentralID PMC3741990

  • Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development. The Journal of neuroscience : the official journal of the Society for Neuroscience Najarro, E. H., Wong, L., Zhen, M., Carpio, E. P., Goncharov, A., Garriga, G., Lundquist, E. A., Jin, Y., Ackley, B. D. 2012; 32 (12): 4196–4211


    In a genetic screen for regulators of synaptic morphology, we identified the single Caenorhabditis elegans flamingo-like cadherin fmi-1. The fmi-1 mutants exhibit defective axon pathfinding, reduced synapse number, aberrant synapse size and morphology, as well as an abnormal accumulation of synaptic vesicles at nonsynaptic regions. Although FMI-1 is primarily expressed in the nervous system, it is not expressed in the ventral D-type (VD) GABAergic motorneurons, which are defective in fmi-1 mutants. The axon and synaptic defects of VD neurons could be rescued when fmi-1 was expressed exclusively in non-VD neighboring neurons, suggesting a cell nonautonomous action of FMI-1. FMI-1 protein that lacked its intracellular domain still retained its ability to rescue the vesicle accumulation defects of GABAergic motorneurons, indicating that the extracellular domain was sufficient for this function of FMI-1 in GABAergic neuromuscular junction development. Mutations in cdh-4, a Fat-like cadherin, cause similar defects in GABAergic motorneurons. The cdh-4 is expressed by the VD neurons and seems to function in the same genetic pathway as fmi-1 to regulate GABAergic neuron development. Thus, fmi-1 and cdh-4 cadherins might act together to regulate synapse development and axon pathfinding.

    View details for DOI 10.1523/JNEUROSCI.3094-11.2012

    View details for PubMedID 22442082

    View details for PubMedCentralID PMC3325105

  • The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans. Development (Cambridge, England) Steimel, A., Wong, L., Najarro, E. H., Ackley, B. D., Garriga, G., Hutter, H. 2010; 137 (21): 3663–73


    Development of a functional neuronal network during embryogenesis begins with pioneer axons creating a scaffold along which later-outgrowing axons extend. The molecular mechanism used by these follower axons to navigate along pre-existing axons remains poorly understood. We isolated loss-of-function alleles of fmi-1, which caused strong axon navigation defects of pioneer and follower axons in the ventral nerve cord (VNC) of C. elegans. Notably follower axons, which exclusively depend on pioneer axons for correct navigation, frequently separated from the pioneer. fmi-1 is the sole C. elegans ortholog of Drosophila flamingo and vertebrate Celsr genes, and this phenotype defines a new role for this important molecule in follower axon navigation. FMI-1 has a unique and strikingly conserved structure with cadherin and C-terminal G-protein coupled receptor domains and could mediate cell-cell adhesion and signaling functions. We found that follower axon navigation depended on the extracellular but not on the intracellular domain, suggesting that FMI-1 mediates primarily adhesion between pioneer and follower axons. By contrast, pioneer axon navigation required the intracellular domain, suggesting that FMI-1 acts as receptor transducing a signal in this case. Our findings indicate that FMI-1 is a cell-type dependent axon guidance factor with different domain requirements for its different functions in pioneers and followers.

    View details for DOI 10.1242/dev.054320

    View details for PubMedID 20876647

    View details for PubMedCentralID PMC2959053

Latest information on COVID-19