Bio

Professional Education


  • Doctor of Philosophy, Universite De Montpellier (2014)

Stanford Advisors


Publications

All Publications


  • PET reporter gene imaging and ganciclovir-mediated ablation of chimeric antigen receptor T-cells in solid tumors. Cancer research Murty, S., Labanieh, L., Murty, T., Gowrishankar, G., Haywood, T., Alam, I. S., Beinat, C., Robinson, E., Aalipour, A., Klysz, D. D., Cochran, J. R., Majzner, R. G., Mackall, C. L., Gambhir, S. S. 2020

    Abstract

    Imaging strategies to monitor chimeric antigen receptor (CAR) T-cell biodistribution and proliferation harbor the potential to facilitate clinical translation for the treatment of both liquid and solid tumors. Additionally, the potential adverse effects of CAR T-cells highlight the need for mechanisms to modulate CAR T-cell activity. The herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene has previously been translated as a positron emission tomography (PET) reporter gene for imaging of T-cell trafficking in brain tumor patients. The HSV1-TK enzyme can act as a suicide gene of transduced cells through treatment with the prodrug ganciclovir (GCV). Here we report the molecular engineering, imaging, and GCV-mediated destruction of B7H3 CAR T-cells incorporating a mutated version of the HSV1-tk gene (sr39tk) with improved enzymatic activity for GCV. The sr39tk gene did not affect B7H3 CAR T-cell functionality and in vitro and in vivo studies in osteosarcoma models showed no significant effect on B7H3 CAR T-cell antitumor activity. PET/CT imaging with 9-(4-[18F]-fluoro-3-[hydroxymethyl]butyl)guanine [18F]FHBG of B7H3-sr39tk CAR T-cells in an orthotopic model of osteosarcoma revealed tumor homing and systemic immune expansion. Bioluminescence and PET imaging of B7H3-sr39tk CAR T-cells confirmed complete tumor ablation with intraperitoneal GCV administration. This imaging and suicide ablation system can provide insight into CAR T-cell migration and proliferation during clinical trials while serving as a suicide switch to limit potential toxicities.

    View details for DOI 10.1158/0008-5472.CAN-19-3579

    View details for PubMedID 32958548

Latest information on COVID-19