Bio

Academic Appointments


Administrative Appointments


  • Assistant Professor, Stanford University (2011 - Present)

Honors & Awards


  • Board Certification, Diplomate American College of Veterinary Anesthesia and Analgesia (Dipl. ACVAA) (2010)

Professional Education


  • Ph.D., University of Minnesota, Neurobiology of Pain
  • Residency, Washington State University, Anesthesiology and Pain Management
  • M.S., Washington State University, Pain Management
  • D.V.M., Chulalongkorn University, Veterinary Medicine

Teaching

2013-14 Courses


Publications

Journal Articles


  • Antinociceptive Effects of Sustained-Release Buprenorphine in a Model of Incisional Pain in Rats (Rattus norvegicus). Journal of the American Association for Laboratory Animal Science Chum, H. H., Jampachairsri, K., McKeon, G. P., Yeomans, D. C., Pacharinsak, C., Felt, S. A. 2014; 53 (2): 193-197

    Abstract

    Effective management of postoperative pain is an essential component of the care and welfare of laboratory animals. A sustained-release formulation of buprenorphine (Bup-SR) has recently been introduced to the veterinary market and has been reported to provide analgesia for as long as 72 h. Using evoked mechanical and thermal hypersensitivity tests, we here evaluated the antinociceptive effects of Bup-SR in a model of incisional pain in rats. Paw withdrawal responses were obtained before and 1 through 4 d after surgery. Rats are assigned to receive Bup-SR (0.3, 1.2, or 4.5 mg/kg SC once) or buprenorphine HCl (Bup HCl, 0.05 mg/kg SC twice daily for 3 d). Responses to mechanical and thermal stimuli in the 1.2 and 4.5 Bup-SR groups did not differ from those of rats in the Bup HCl group. Thermal latency on day 3 in rats that received 0.3 mg/kg Bup-SR was significantly different from baseline, indicating that this dose effectively decreased thermal hypersensitivity for at least 48 h. Marked sedation occurred in rats in the 4.5 Bup-SR group. Our findings indicate that Bup-SR at 0.3 or 1.2 mg/kg SC is effective in minimizing hypersensitivity with minimal sedation for at least 48 h (thermal hypersensitivity) and 72 h, respectively, in the incisional pain model in rats.

    View details for PubMedID 24602547

  • Endotracheal intubation in swine LAB ANIMAL Chum, H., Pacharinsak, C. 2012; 41 (11): 309-311

    Abstract

    Swine are commonly used as research models for cardiovascular surgery and disease, gastrointestinal disease, organ transplantation and intra-renal surgery. These surgical models require anesthesia and, consequently, endotracheal intubation in order to protect the airway; prevent aspiration of saliva, blood and foreign materials; and maintain positive pressure ventilation of the animal. Successful intubation is vital to the stable maintenance of swine under inhalational anesthesia. Here we discuss key features of swine anatomy that make intubation challenging, equipment necessary for successful intubation and techniques for endotracheal intubation in swine.

    View details for Web of Science ID 000310653800016

    View details for PubMedID 23079913

  • Microfluidic Single-Cell Analysis Shows That Porcine Induced Pluripotent Stem Cell-Derived Endothelial Cells Improve Myocardial Function by Paracrine Activation CIRCULATION RESEARCH Gu, M., Nguyen, P. K., Lee, A. S., Xu, D., Hu, S., Plews, J. R., Han, L., Huber, B. C., Lee, W. H., Gong, Y., de Almeida, P. E., Lyons, J., Ikeno, F., Pacharinsak, C., Connolly, A. J., Gambhir, S. S., Robbins, R. C., Longaker, M. T., Wu, J. C. 2012; 111 (7): 882-893

    Abstract

    Induced pluripotent stem cells (iPSCs) hold great promise for the development of patient-specific therapies for cardiovascular disease. However, clinical translation will require preclinical optimization and validation of large-animal iPSC models.To successfully derive endothelial cells from porcine iPSCs and demonstrate their potential utility for the treatment of myocardial ischemia.Porcine adipose stromal cells were reprogrammed to generate porcine iPSCs (piPSCs). Immunohistochemistry, quantitative PCR, microarray hybridization, and angiogenic assays confirmed that piPSC-derived endothelial cells (piPSC-ECs) shared similar morphological and functional properties as endothelial cells isolated from the autologous pig aorta. To demonstrate their therapeutic potential, piPSC-ECs were transplanted into mice with myocardial infarction. Compared with control, animals transplanted with piPSC-ECs showed significant functional improvement measured by echocardiography (fractional shortening at week 4: 27.2±1.3% versus 22.3±1.1%; P<0.001) and MRI (ejection fraction at week 4: 45.8±1.3% versus 42.3±0.9%; P<0.05). Quantitative protein assays and microfluidic single-cell PCR profiling showed that piPSC-ECs released proangiogenic and antiapoptotic factors in the ischemic microenvironment, which promoted neovascularization and cardiomyocyte survival, respectively. Release of paracrine factors varied significantly among subpopulations of transplanted cells, suggesting that transplantation of specific cell populations may result in greater functional recovery.In summary, this is the first study to successfully differentiate piPSCs-ECs from piPSCs and demonstrate that transplantation of piPSC-ECs improved cardiac function after myocardial infarction via paracrine activation. Further development of these large animal iPSC models will yield significant insights into their therapeutic potential and accelerate the clinical translation of autologous iPSC-based therapy.

    View details for DOI 10.1161/CIRCRESAHA.112.269001

    View details for Web of Science ID 000308868800015

    View details for PubMedID 22821929

  • Differential modulation of neurons in the rostral ventromedial medulla by neurokinin-1 receptors JOURNAL OF NEUROPHYSIOLOGY Brink, T. S., Pacharinsak, C., Khasabov, S. G., Beitz, A. J., Simone, D. A. 2012; 107 (4): 1210-1221

    Abstract

    The rostral ventromedial medulla (RVM) is part of descending circuitry that modulates nociceptive processing at the level of the spinal cord. RVM output can facilitate pain transmission under certain conditions such as inflammation, and thereby contribute to hyperalgesia. Evidence suggests that substance P and activation of neurokinin-1 (NK-1) receptors in the RVM are involved in descending facilitation of nociception. We showed previously that injection of NK-1 receptor antagonists into the RVM attenuated mechanical and heat hyperalgesia produced by intraplantar injection of capsaicin. Furthermore, intraplantar injection of capsaicin excited ON cells in the RVM and inhibited ongoing activity of OFF cells. In the present studies, we therefore examined changes in responses of RVM neurons to mechanical and heat stimuli after intraplantar injection of capsaicin and determined the role of NK-1 receptors by injecting a NK-1 receptor antagonist into the RVM prior to capsaicin. After capsaicin injection, excitatory responses of ON cells and inhibitory responses of OFF cells evoked by mechanical and heat stimuli applied to the injected, but not contralateral, paw were increased. Injection of the NK-1 antagonist L-733,060 did not alter evoked responses of ON or OFF cells but attenuated the capsaicin-evoked enhanced responses of ON cells to mechanical and heat stimuli with less of an effect on the enhanced inhibitory responses of OFF cells. These data support the notion that descending facilitation from RVM contributes to hyperalgesia and that NK-1 receptors, presumably located on ON cells, play an important role in initiating descending facilitation of nociceptive transmission.

    View details for DOI 10.1152/jn.00678.2011

    View details for Web of Science ID 000301518000014

    View details for PubMedID 22031765

  • Preclinical Derivation and Imaging of Autologously Transplanted Canine Induced Pluripotent Stem Cells JOURNAL OF BIOLOGICAL CHEMISTRY Lee, A. S., Xu, D., Plews, J. R., Nguyen, P. K., Nag, D., Lyons, J. K., Han, L., Hu, S., Lan, F., Liu, J., Huang, M., Narsinh, K. H., Long, C. T., de Almeida, P. E., Levi, B., Kooreman, N., Bangs, C., Pacharinsak, C., Ikeno, F., Yeung, A. C., Gambhir, S. S., Robbins, R. C., Longaker, M. T., Wu, J. C. 2011; 286 (37): 32697-32704

    Abstract

    Derivation of patient-specific induced pluripotent stem cells (iPSCs) opens a new avenue for future applications of regenerative medicine. However, before iPSCs can be used in a clinical setting, it is critical to validate their in vivo fate following autologous transplantation. Thus far, preclinical studies have been limited to small animals and have yet to be conducted in large animals that are physiologically more similar to humans. In this study, we report the first autologous transplantation of iPSCs in a large animal model through the generation of canine iPSCs (ciPSCs) from the canine adipose stromal cells and canine fibroblasts of adult mongrel dogs. We confirmed pluripotency of ciPSCs using the following techniques: (i) immunostaining and quantitative PCR for the presence of pluripotent and germ layer-specific markers in differentiated ciPSCs; (ii) microarray analysis that demonstrates similar gene expression profiles between ciPSCs and canine embryonic stem cells; (iii) teratoma formation assays; and (iv) karyotyping for genomic stability. Fate of ciPSCs autologously transplanted to the canine heart was tracked in vivo using clinical positron emission tomography, computed tomography, and magnetic resonance imaging. To demonstrate clinical potential of ciPSCs to treat models of injury, we generated endothelial cells (ciPSC-ECs) and used these cells to treat immunodeficient murine models of myocardial infarction and hindlimb ischemia.

    View details for DOI 10.1074/jbc.M111.235739

    View details for Web of Science ID 000294726800078

    View details for PubMedID 21719696

  • Comparison of rectal and tympanic core body temperature measurement in adult Guyanese squirrel monkeys (Saimiri sciureus sciureus) JOURNAL OF MEDICAL PRIMATOLOGY Long, C. T., Pacharinsak, C., Jampachaisri, K., McKeon, G. P., Howard, A. M., Albertelli, M. A., Felt, S. A. 2011; 40 (2): 135-141

    Abstract

    Measuring core body temperature in a manner that is safe for animals and veterinary personnel is an important part of a physical examination. For nonhuman primates, this can involve increased restraint, additional stress, as well as the use of anesthetics and their deleterious effects on body temperature measurements. The purpose of this study was to compare two non-invasive methods of infrared tympanic thermometry to standard rectal thermometry in adult squirrel monkeys.Tympanic temperatures were collected from 37 squirrel monkeys and compared to rectal temperatures using a human and veterinary infrared tympanic thermometer.Compared with rectal temperature measurements, the human tympanic thermometer readings were not significantly different, while the veterinary tympanic thermometer measurements were significantly higher (P<0.05). There were no differences between sexes.The tympanic thermometer designed for use in humans can be used in adult squirrel monkeys as an alternative to rectal thermometry for assessing core body temperature.

    View details for DOI 10.1111/j.1600-0684.2010.00449.x

    View details for Web of Science ID 000287965500009

    View details for PubMedID 20946145

  • Analgesic Effects of Tramadol, Tramadol-Gabapentin, and Buprenorphine in an Incisional Model of Pain in Rats (Rattus norvegicus) JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE McKeon, G. P., Pacharinsak, C., Long, C. T., Howard, A. M., Jampachaisri, K., Yeomans, D. C., Felt, S. A. 2011; 50 (2): 192-197

    Abstract

    Postoperative pain management in laboratory animals relies heavily on a limited number of drug classes, such as opioids and nonsteroidal antiinflammatory drugs. Here we evaluated the effects of saline, tramadol, tramadol with gabapentin, and buprenorphine (n = 6 per group) in a rat model of incisional pain by examining thermal hyperalgesia and weight-bearing daily for 6 d after surgery. All drugs were administered preemptively and continued for 2 consecutive days after surgery. Rats treated with saline or with tramadol only showed thermal hyperalgesia on days 1 through 4 and 1 through 3 after surgery, respectively. In contrast, buprenorphine-treated rats showed no thermal hyperalgesia on days 1 and 2 after surgery, and rats given tramadol with gabapentin showed reduced thermal hyperalgesia on days 2 and 4. For tests of weight-bearing, rats treated with saline or with tramadol only showed significantly less ipsilateral weight-bearing on day 1 after surgery, whereas rats given either buprenorphine or tramadol with gabapentin showed no significant change in ipsilateral weight-bearing after surgery. These data suggest that tramadol alone provides insufficient analgesia in this model of incisional pain; buprenorphine and, to a lesser extent, tramadol with gabapentin provide relief of thermal hyperalgesia and normalize weight-bearing.

    View details for Web of Science ID 000288643600006

    View details for PubMedID 21439212

  • Cannabinoid Modulation of Cutaneous A delta Nociceptors During Inflammation JOURNAL OF NEUROPHYSIOLOGY Potenzieri, C., Brink, T. S., Pacharinsak, C., Simone, D. A. 2008; 100 (5): 2794-2806

    Abstract

    Previous studies have demonstrated that locally administered cannabinoids attenuate allodynia and hyperalgesia through activation of peripheral cannabinoid receptors (CB(1) and CB(2)). However, it is currently unknown if cannabinoids alter the response properties of nociceptors. In the present study, correlative behavioral and in vivo electrophysiological studies were conducted to determine if peripheral administration of the cannabinoid receptor agonists arachidonyl-2'-chloroethylamide (ACEA) or (R)-(+)-methanandamide (methAEA) could attenuate mechanical allodynia and hyperalgesia, and decrease mechanically evoked responses of Adelta nociceptors. Twenty-four hours after intraplantar injection of complete Freund's adjuvant (CFA), rats exhibited allodynia (decrease in paw withdrawal threshold) and hyperalgesia (increase in paw withdrawal frequency), which were attenuated by both ACEA and methAEA. The antinociceptive effects of these cannabinoids were blocked by co-administration with the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) but not with the CB(2) receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-y l](4-methoxyphenyl)methanone (AM630). ACEA and methAEA did not produce antinociception under control, non-inflamed conditions 24 h after intraplantar injection of saline. In parallel studies, recordings were made from cutaneous Adelta nociceptors from inflamed or control, non-inflamed skin. Both ACEA and methAEA decreased responses evoked by mechanical stimulation of Adelta nociceptors from inflamed skin but not from non-inflamed skin, and this decrease was blocked by administration of the CB(1) receptor antagonist AM251. These results suggest that attenuation of mechanically evoked responses of Adelta nociceptors contributes to the behavioral antinociception produced by activation of peripheral CB(1) receptors during inflammation.

    View details for DOI 10.1152/jn.90809.2008

    View details for Web of Science ID 000260795600030

    View details for PubMedID 18784270

  • NK-1 receptors in the rostral ventromedial medulla contribute to hyperalgesia produced by intraplantar injection of capsaicin PAIN Pacharinsak, C., Khasabov, S. G., Beitz, A. J., Simone, D. A. 2008; 139 (1): 34-46

    Abstract

    The rostral ventromedial medulla (RVM) is an area of the brainstem involved in the descending modulation of nociception at the level of the spinal cord. Although the RVM is involved in the inhibition or facilitation of nociception, the underlying mechanisms are not understood. Here we examined the role of the neuropeptide substance P and neurokinin-1 (NK-1) receptors located in the RVM on withdrawal responses evoked by mechanical and heat stimuli applied to the rat hindpaw under normal conditions and during hyperalgesia produced by capsaicin. The mechanical withdrawal threshold was obtained using von Frey monofilaments applied to the plantar surface of the hindpaw. Sensitivity to heat was determined by measuring the latency to withdrawal from radiant heat applied to the plantar surface. Mechanical and heat hyperalgesia were defined as a decrease in withdrawal response threshold or latency, respectively. Rats were prepared with a chronic cannula and either vehicle or the NK-1 receptor antagonists, L-733,060 or RP-67580, was injected into the RVM. Paw withdrawal responses were obtained before and after RVM injection, and then at 5, 30, and 60 min after an intraplantar injection of capsaicin (10 microg). Injection of the NK-1 antagonists at doses of 0.5 pmol or higher did not alter withdrawal responses to mechanical or heat stimuli under normal conditions but reduced the duration of nocifensive behavior and the mechanical and heat hyperalgesia produced by capsaicin. These findings suggest that the activation of NK-1 receptors in the RVM contributes to the hyperalgesia produced by capsaicin.

    View details for DOI 10.1016/j.pain.2008.02.032

    View details for Web of Science ID 000260159200005

    View details for PubMedID 18407414

  • Animal models of cancer pain COMPARATIVE MEDICINE Pacharinsak, C., Beitz, A. 2008; 58 (3): 220-233

    Abstract

    Modern cancer therapies have significantly increased patient survival rates in both human and veterinary medicine. Since cancer patients live longer they now face new challenges resulting from severe, chronic tumor-induced pain. Unrelieved cancer pain significantly decreases the quality of life of such patients; thus the goal of pain management is to not only to alleviate pain, but also to maintain the patient's physiological and psychological well-being. The major impediment for developing new treatments for cancer pain has been our limited knowledge of the basic mechanisms that drive cancer pain and the lack of adequate animal cancer pain models to study the molecular, biochemical and neurobiological pathways that generate and maintain cancer pain. However this situation has recently changed with the recent development of several novel animal models of cancer pain. This review will focus on describing these animal models, many of them in rodents, and reviewing some of the recent information gained from the use of these models to investigate the basic mechanims that underlie the development and maintenance of cancer pain. Animal models of cancer pain can be divided into the following five categories: bone cancer pain models, non-bone cancer pain models, cancer invasion pain models, cancer chemotherapeutic-induced peripheral neuropathy models, and spontaneous occurring cancer pain models. These models will be important not only for enhancing our knowledge of how cancer pain is generated, but more importantly for the development of novel therapeutic regimes to treat cancer pain in both domestic animals and humans.

    View details for Web of Science ID 000256870700001

    View details for PubMedID 18589864

  • Effective Pain Management in Small Animals 15TH CONGRESS OF THE FEDERATION OF ASIAN VETERINARY ASSOCIATIONS, FAVA-OIE JOINT SYMPOSIUM ON EMERGING DISEASES, PROCEEDINGS Pacharinsak, C. 2008: S85-S85
  • Postoperative analgesia in dogs receiving epidural morphine plus medetomidine JOURNAL OF VETERINARY PHARMACOLOGY AND THERAPEUTICS Pacharinsak, C., Greene, S. A., Keegan, R. D., Kalivas, P. W. 2003; 26 (1): 71-77

    Abstract

    This investigation was carried out to compare the postoperative analgesia and plasma morphine concentrations in dogs given epidural morphine or epidural morphine combined with medetomidine prior to surgery. Twelve dogs (seven males and five females) with ruptured cranial cruciate ligaments presented to the Washington State University Veterinary Teaching Hospital. Six dogs received an epidural injection of morphine (0.1 mg/kg) and six dogs received epidural morphine (0.1 mg/kg) combined with medetomidine (0.005 mg/kg). Numeric rating scale (NRS) pain scores and cumulative pain scores (CPS) were assigned to 10-min segments of video. Video segments, heart rates and respiratory rates were recorded prior to premedication and at 4, 8, 12, 18 and 24 h after epidural injection. Blood was sampled from the cephalic vein at each of these times and during anesthesia at 0.5, 1, 2 and 3 h after epidural injection. Data were analyzed using either Friedman's test or one-way anova for repeated measures. In the morphine group, significant increases compared with premedication values were detected at 4, 8 and 12 h after epidural injection for NRS and at 4 and 12 h after epidural injection for CPS. In the morphine plus medetomidine group, NRS was significantly higher at 4 and 8 h whereas there were no differences from baseline values for CPS. Plasma morphine concentrations were not significantly different between treatment groups, but were significantly increased compared with preinjection values at 0.5, 1, 12, 18, and 24 h in the morphine plus medetomidine group. Epidurally administered morphine combined with medetomidine was associated with only minor benefits based on subjective pain scoring when compared with morphine alone in these dogs undergoing repair of a ruptured cranial cruciate ligament.

    View details for Web of Science ID 000181056100005

    View details for PubMedID 12603778

Conference Proceedings


  • Analgesic Effects of Sustained Release Buprenorphine in an Incisional Model of Hyperalgesia in Rats (Rattus norvegicus) Chum, H., McKeon, G., Yeomans, D. C., Jampachaisri, K., Pacharinsak, C., Felt, S. AMER ASSOC LABORATORY ANIMAL SCIENCE. 2012: 692-692

Stanford Medicine Resources: